

Engineers, Planners & Landscape Architects

Engineering

Land/Site Development

Municipal Infrastructure

Environmental/ Water Resources

Traffic/

Transportation

Recreational

Planning

Land/Site Development

Planning Application Management

Municipal Planning

Urban Design

Expert Witness (OLT)

Wireless Industry

Landscape Architecture

Streetscapes & Public Amenities

Open Space, Parks &

Recreation

Community & Residential

Commercial &

Institutional

Environmental Restoration

39 & 53 Carss Street, Town of Almonte

Traffic Impact Study

Prepared for: 2607129 Ontario Inc.

39 AND 53 CARSS STREET ALMONTE, ONTARIO TRAFFIC IMPACT STUDY

Prepared By:

NOVATECH

Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

August 2025

Novatech File: 119186 Ref: R-2025-038

August 28, 2025

Melanie Knight, MCIP RPP, Acting Director Municipality of Mississippi Mills Development Services and Engineering 3131 Old Perth Rd, Box 400 Almonte ON, K0A 1A0

Reference: 39 and 53 Carss Street

Traffic Impact Study Novatech File No. 119186

This Traffic Impact Study has been prepared in support of the proposed Official Plan and Zoning By-law Amendments at 39 and 53 Carss Street. The development is located on the southwest corner of the Carss Street/Union Street intersection.

This study determines the traffic impacts of the development. It estimates site generated traffic, and reviews intersection operations and turn lane warrants at the proposed site accesses to Carss Street and Union Street.

If you have any questions or comments regarding this report, please feel free to contact Brad Byvelds, or the undersigned.

Yours truly,

NOVATECH

Trevor Van Wiechen, P.Eng. Project Engineer | Transportation

to Van Wilh

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Proposed Development	2
1.2	Analysis Parameters	2
1.3	Analysis Methods	2
2.0	EXISTING CONDITIONS	3
2.1	Roadways	3
2.2	! Intersections	3
2.3	Pedestrian and Cycling Facilities	4
2.4	Transit	4
2.5	Existing Traffic Volumes	4
3.0	PLANNED CONDITIONS	4
4.0	SITE TRAFFIC	5
4.1	Trip Generation – Site A	5
4	4.1.1 Scenario One – Site A	6
4	4.1.2 Scenario Two – Site A	6
4	4.1.3 Scenario Three – Site A	7
4.2	Prip Generation – Site B	7
4.3	Trip Distribution	8
4.4	Trip Assignment	8
5.0	BACKGROUND TRAFFIC CONDITIONS	
5.1		
5.2	· ·	
6.0	INTERSECTION OPERATING CONDITIONS	
6.1	3	
6.2	Background Traffic Operations	14
6.3	Total Traffic Operations	14
7.0	ON-SITE DESIGN	16
7.1		
7.2	P. Circulation	16
7.3	u	
8.0	CONCLUSIONS AND RECOMMENDATIONS	17

Figures	
Figure 1: View of the Subject Site	1
Figure 2: Existing Traffic Volumes	5
Figure 3: Site Generated Trips – Scenario 1	8
Figure 4: Site Generated Trips – Scenario 2	9
Figure 5: Site Generated Trips – Scenario 3	
Figure 6: 2027 Background Traffic Volumes	10
Figure 7: 2032 Background Traffic Volumes	10
Figure 8: 2027 Total Traffic – Scenario 1	11
Figure 9: 2027 Total Traffic – Scenario 2	11
Figure 10: 2027 Total Traffic – Scenario 3	12
Figure 11: 2032 Total Traffic – Scenario 1	12
Figure 12: 2032 Total Traffic – Scenario 2	13
Figure 13: 2032 Total Traffic – Scenario 3	13
Tables	
Table 1: Traffic Count Summary	
Table 2: Trip Generation – Site A	
Table 3: Trip Generation – Site B	
Table 4: Trip Assignment Summary	
Table 5: Analysis Results - Existing Traffic Conditions	
Table 6: Analysis Results - Background Traffic Conditions	
Table 7: Analysis Results - Total Traffic Conditions – Scenario 1	
Table 8: Analysis Results - Total Traffic Conditions – Scenario 2	
Table 9: Analysis Results - Total Traffic Conditions - Scenario 3	
Table 10: Parking Requirements	17

Appendices
Appendix A: Proposed Concept Plan
Appendix B: Traffic Count Data Appendix C: Appendix D: Synchro Reports
Left Turn Lane Graphs

EXECUTIVE SUMMARY

This Traffic Impact Study (TIS) has been prepared in support of the proposed Official Plan and Zoning By-law Amendments at 39 and 53 Carss Street, located on the southwest corner of the Carss Street/Union Street intersection.

The subject site includes the properties of 39 Carss Street and 53 Carss Street which will be developed independently and will operate independent of each other. The 39 Carss Street property contains the Pinehurst Manor, while the 53 Carss Street property is currently vacant. The property has a 'Residential' Land Use from the Municipality of Mississippi Mills Official Plan (OP) and is zoned as 'Development' area in the Zoning By-law (ZBL). From the Lanark County OP the property has a 'Settlement Area' Land Use.

The conceptual development will be developed in two phases (Site A and Site B). The conceptual development is summarized below:

Site A

- 27 individual cabins
- Bed and Breakfast (8 guest rooms)
- Spa with Boutique Spa Hotel (12 guest rooms)
- Banquet Hotel (7 guest rooms)
- Hotel (8 guest rooms)
- Restaurant with 3,605ft² of Gross Floor Area (GFA)
- 184 parking spaces
- One access to Carss Street and one access to Union Street

Site B

- 45 units of senior apartment units
- 63 parking spaces
- Two accesses to Carss Street

For the purposes of this report, the development is anticipated to be constructed in phases with full buildout occurring in 2027.

The conclusions and recommendations of this TIS can be summarized as follows:

Forecasting

- Scenario One studies the impacts that typical day-to-day operations would have on the study area. Day-to-day uses include trips associated with the planned hotel, restaurant, and spa uses. This scenario assumes site generated traffic arriving and leaving during the AM and PM peak hours and that there will be some internal capture between the three different land uses. Under Scenario One, the development is expected to generate 30 vehicle trips (20 in and 10 out) during the AM peak hour and 60 vehicle trips (34 in and 26 out) during the PM peak hour.
- Scenario Two studies the impacts that a wedding or similar event would have on the study
 area. Assuming an average vehicle capacity of two persons per car, a wedding with 100
 guests arriving during the PM peak hour would generate roughly 50 inbound vehicle trips.

Scenario Three studies the impacts that a corporate retreat, banquet, or similar type event
would have on the study area. During this scenario it is assumed that vehicles would arrive
during a discrete time period prior to the start time of the event and would leave the site
during a discrete time period upon the conclusion of the event. Assuming an average vehicle
capacity of two persons per car, a corporate event with 100 guests would generate roughly
50 trips arriving during the AM peak hour and leaving during the PM peak hour.

• Site B includes a four-storey senior apartment building with 45 dwelling units. The subject site is expected to generate 9 vehicle trips (3 in and 6 out) during the AM peak hour and 11 vehicle trips (6 in and 5 out) during the PM peak hour. Trips from Site B have been applied to all Site A scenarios that have been identified

Total Traffic Operations

- All movements at all study area intersections are expected to operate with acceptable LOS
 during all scenarios during the 2027 and 2032 total traffic scenarios. Site generated traffic
 is not anticipated to have a significant impact on the operating conditions within the study
 area.
- A left turn lane warrant analysis was conducted to confirm if a northbound left turn lane would be required at the Martin Street/Carss Street intersection under 2032 total traffic conditions from all three scenarios. Based on a design speed of 70km/hr, the left turn lane warrants indicated that a northbound left turn lane at the Martin Street/Carss Street intersection would not be required.
- The total traffic volumes on all roadways within the study area are expected to be within the optimal thresholds for a local road identified in the 2024 MMTMP.

Development Design

- As the proposed Union Street access meets Union Street at a perpendicular angle and no sightline obstruction have been identified based on a desktop review, available sightlines are within recommended guidelines to allow safe all directional access to the development.
- As the proposed and existing Carss Street accesses meets Carss Street at a perpendicular angle and no sightline obstruction have been identified based on a desktop review, available sightlines are within recommended guidelines to allow safe all directional access to the development.
- As the proposed driveways to Carss Street are not expected to handle a significant amount
 of traffic and are spaced 10m away this is assumed to be sufficient.
- The proposed Union Street access to Site A intersects with the Ottawa Valley Rec Trail, approximately 15-20m west of Union Street. To ensure pedestrian and cyclist safety stop signs and street lighting along the access are recommended on both sides of the Ottawa Valley Rec Trail.
- All streets within the site have a proposed platform width of 6.0m. Pathways will be provided throughout the site connecting the various uses. Lay-by's will be provided in front of the restaurant and spa uses.
- Fire route access is provided throughout the proposed development.

Parking

• The proposed development includes 184 vehicle parking spaces for the non-residential uses and 63 vehicle parking spaces for the future seniors apartments meeting the ZBL requirements.

1.0 INTRODUCTION

This Traffic Impact Study (TIS) has been prepared in support of the proposed Official Plan and Zoning By-law Amendments at 39 and 53 Carss Street, located on the southwest corner of the Carss Street/Union Street intersection.

An aerial view of the subject site is provided in Figure 1.

Figure 1: View of the Subject Site

The subject site includes the properties of 39 Carss Street and 53 Carss Street which will be developed independently and will operate independent of each other. The 39 Carss Street property contains the Pinehurst Manor, while the 53 Carss Street property is currently vacant. The property has a 'Residential' Land Use from the Municipality of Mississippi Mills Official Plan (OP) and is zoned as 'Development' area in the Zoning By-law (ZBL). From the Lanark County OP the property has a 'Settlement Area' Land Use.

1.1 Proposed Development

The conceptual development will be developed in two phases (Site A and Site B). The conceptual development is summarized below:

Site A

- 27 individual cabins
- Bed and Breakfast (8 guest rooms)
- Spa with Boutique Spa Hotel (12 guest rooms)
- Banquet Hotel (7 guest rooms)
- Hotel (8 guest rooms)
- Restaurant with 3,605ft² of Gross Floor Area (GFA)
- 184 parking spaces
- One access to Carss Street and one access to Union Street

Site B

- 45 units of senior apartment units
- 63 parking spaces
- Two accesses to Carss Street

For the purposes of this report, the development is anticipated to be constructed in phases with full buildout occurring in 2027.

A copy of the Concept Plan is included in **Appendix A**.

1.2 Analysis Parameters

The study area was discussed with Municipality of Mississippi Mill's staff and will include an analysis of the future accesses to Carss Street and Union Street, the Union Street/Brookdale intersection, and the Carss Street/Martin Street intersection for the following years:

- 2027 Full build-out
- 2032 Five-year horizon

1.3 Analysis Methods

Intersection capacity analysis was completed using Synchro 11 software. This software uses methodology from the Highway Capacity Manual (HCM), published by the Transportation Research Board, to evaluate signalized and unsignalized intersections.

Intersection operating conditions are commonly described in terms of a Level of Service (LOS) and volume to capacity (v/c) ratio. LOS is a quality measure of speed, freedom to manoeuvre, interruptions, comfort, and convenience. Letters are assigned to six levels, with LOS 'A' representing optimal operating conditions and LOS 'F' representing failing operating conditions. Vehicle capacity is defined as the maximum number of vehicles that can pass a given point during a specified period under prevailing traffic conditions.

The LOS of an unsignalized intersection is based on average control delay and is defined for individual movements. Control delay includes initial deceleration, queue move-up time, stopped

time and final acceleration. For unsignalized intersections, Exhibit 19-1 of the 2010 HCM defines the relationship between control delay and LOS as follows:

LOS	Delay (sec/veh)
А	<10
В	10 to 15
С	15 to 25
D	25 to 35
E	35 to 50
F	>50

In this study, movements at unsignalized intersections have been evaluated in terms of the LOS as defined in the foregoing tables. Mitigation measures will be considered for movements with a LOS of E or F for unsignalized intersections.

2.0 EXISTING CONDITIONS

2.1 Roadways

Carss Street is an east-west local roadway that extends from Martin Street to the Mississippi River. Carss Street has an undivided urban cross-section. To the east of Union Street it has a paved surface and to the west of Union Street it has a gravel surface. Carss Street has an unposted regulatory speed limit of 50km/h.

Brookdale Street is an east-west local roadway that extends from Union Street to Martin Street. It has a two-lane undivided urban cross. It has an unposted regulatory speed limit of 50km/h.

Union Street is a north-south local urban roadway that extends from Queen Street to Carss Street. It was recently reconstructed with a two-lane undivided urban cross section with a concrete sidewalk on the east side. It has an unposted regulatory speed limit of 50km/h.

Martin Street (CR 17) is a north-south roadway under the Jurisdiction of Lanark County that extends from Queen Street to Blakeney Road. To the south of Brookdale Street, it has an urban cross section with a posted speed of 40km/h and asphalt sidewalks on both sides of the road. To the north of Brookdale Street, it has a rural cross section with a posted speed of 60km/h.

2.2 Intersections

The Union Street/Brookdale Street intersection operates under all-way stop control. No auxiliary turn lanes are currently provided at this intersection.

The Carss Street/Martin Street intersection operates under side street stop control with free flow along Martin Street. No auxiliary turn lanes are currently provided at this intersection.

2.3 Pedestrian and Cycling Facilities

Currently there are no sidewalks or cycling facilities provided on Carss Street within the vicinity of the proposed development. Union Street has a sidewalk on the east side within the vicinity of the proposed development.

The Ottawa Valley Recreational Trail travels in a north-south direction along the eastern frontage of the subject site.

The Springbank Trail begins on Carss Street to the west of the Ottawa Valley Recreational Trail and travels north from Carss Street.

2.4 Transit

Currently there are no transit routes offered within the vicinity of the subject area.

2.5 Existing Traffic Volumes

Weekday traffic counts completed during the AM, mid-day, and PM peak periods (7:00-10:00AM, 11:30AM-1:30PM, and 3:00-7:00PM) were used to determine the existing pedestrian, cyclist, and vehicular traffic volumes at the study area intersections. The traffic count dates and observed AM, mid-day, and PM peak hours are summarized in the following table.

Table 1: Traffic Count Summary

Intersection	Date	Peak Hours
Union Street/Brookdale Street	March 27, 2024	7:00-10:00AM, 11:30AM- 1:30PM, and 3:00-7:00PM
Martin Street/Carss Street	March 26, 2024	7:00-10:00AM, 11:30AM- 1:30PM, and 3:00-7:00PM

Observed weekday AM and PM peak hour traffic volumes at the study area intersections are shown in **Figure 2**. Peak hour summary sheets of the above traffic counts are included in **Appendix B**.

3.0 PLANNED CONDITIONS

Within vicinity of the study area the Hilan Village subdivision is planned to the north of the subject site. The subdivision will be built out in phases and have access to Carss Street. The subdivision will have 36 single family detached units, 46 semi detached units, and 57 mid-rise multifamily housing units. Phase 1 is expected to be completed in 2025 and full buildout is expected in 2028. Per the TIA completed for the Hilan Village subdivision the first phase does not include a significant amount of trips and the TIA only includes traffic analysis of 2028 conditions for site traffic. Site traffic from Hilan Village has been included in 2032 traffic conditions within this report.

Per Schedule 9 of the 2024 MMTMP, new concrete sidewalks are proposed on Brookdale Street and Carss Street between Union Street and Martin Street. The sidewalks on Brookdale Street and Carss Street are classified as "Low Priority – Rural Context".

Per Table 38/Schedule 11 of the 2024 MMTMP, as part of the Interim Cycling Plan existing bike lanes are proposed to be widened on Martin Street between Ottawa Street and Stephen Street.

Additionally, on Martin Street between Stephen Street to the future north collector road, pathways are planned to be converted to sidewalks and Shared Road pavement markings and signage will be added.

Per Table 38/Schedule 12 of the 2024 MMTMP, as part of the Ultimate Cycling full urbanization with cycle tracks and sidewalks are proposed on Martin Street.

Figure 2: Existing Traffic Volumes 0(0) **CARSS STREET** 1(0)♂~→ 0 5(4) 5(5) 0(0) **c** 4(3) **←**あ 0(0) **BROOKDALE STREET LEGEND** 水 4(6) ХX AM Peak Hour veh/h PM Peak Hour veh/h (yy) MARTIN STREET **UNION STREET** 0 Unsignalized Intersection 2(0) 1(5) 文 Pedestrian Movement 000 Cyclist Movement Ø₽

4.0 SITE TRAFFIC

4.1 Trip Generation – Site A

Site A includes a variety of different non-residential uses including: 4,800 ft² spa/hotel, a 1,905 ft² restaurant addition to the existing Pinehurst Manor, a banquet hall, and 27 private cabins. Hotel spaces within the subject site include the 12 guest rooms within the spa and hotel, the 8 guest rooms within the two-storey hotel, the 8 guest rooms within the existing Pinehurst Manor, the 7 guest rooms within the banquet hall, and the 27 private cabins.

Trips generated by the proposed development have been estimated based on a combination of 'first principles' and trip generation rates from the Institute of Transportation Engineers (ITE) Trip

Generation Manual, 11th Edition. For the purposes of this report, three analysis scenarios have been reviewed for Site A.

4.1.1 Scenario One - Site A

Scenario One studies the impacts that typical day-to-day operations would have on the study area. Day-to-day uses include trips associated with the planned hotel, restaurant, and spa uses. This scenario assumes site generated traffic arriving and leaving during the AM and PM peak hours and that there will be some internal capture between the three different land uses.

The boutique hotel and spa are envisioned as an extended stay resort with guests staying multiple days at the hotel and walking throughout the site to access the spa, restaurant, and other amenities during their stay. The spa is expected to provide day passes to customers not staying at the boutique hotel. While each of the principle uses are expected to be open to the public the majority of the time, it is assumed that roughly 30% of all trips generated by the development can be reduced due to internal capture.

Trips generated by the proposed hotel and restaurant have been estimated using the ITE code 310 (Hotel) and 931 (Fine Dining Restaurant). As an applicable land use is not included within ITE for a spa, first principles methodology was used to generate trips. The proposed concept plan assigns 14 parking spaces to spa land use. For the purposes of this analysis, it is assumed that 70% of the parking lot will fill when the spa opens and then turn over during the PM peak hour. **Table 3** outlines the trip generation results using the relevant rates for the proposed development.

Table 2: Trip Generation - Site A

Use Description	Land Use Code	ITE Code	Units	Į.	AM Pea	k	P	M Peak	(
Description	Code	Code		IN	OUT	TOT	IN	OUT	TOT
Hotel	Hotel	310	62	16	13	29	19	18	37
Restaurant	Fine Dining Restaurant	931	3,605ft²	2	1	3	19	9	28
Spa	N/A	N/A	14	10	0	10	10	10	20
	TOTAL						48	37	85
1	-8	-4	-12	-14	-11	-25			
	20	10	30	34	26	60			

The subject site is expected to generate 30 vehicle trips (20 in and 10 out) during the AM peak hour and 60 vehicle trips (34 in and 26 out) during the PM peak hour.

4.1.2 Scenario Two - Site A

Scenario Two studies the impacts that a wedding or similar event would have on the study area. During a wedding it is assumed that all guests would arrive during a discrete time period prior to the start of the wedding. Although it is assumed most wedding would have a start time during the afternoon on a Friday, Saturday, or Sunday, it has been conservatively assumed that all vehicles would arrive during the weekday PM peak hour. It is assumed that staff will arrive periodically throughout the day during off-peak time periods to set up the event. All site traffic is assumed to depart gradually throughout the evening during off-peak time periods. It is assumed that during a wedding or similar event that all, or a majority, of the entire site will be reserved for the event and closed to the public.

Per discussions with the client, a maximum capacity wedding is expected to be roughly 175 people. Of the 175 people expected at a wedding type event, 75 are expected to arrive during non-peak times and stay within the cabins and hotel lodgings while the other 100 guests will arrive during the PM peak hour. Assuming an average vehicle capacity of two persons per car, a wedding with 100 guests arriving during the PM peak hour would generate roughly 50 vehicle trips.

4.1.3 Scenario Three - Site A

Scenario Three studies the impacts that a corporate retreat, banquet, or similar type event would have on the study area. During this scenario it is assumed that vehicles would arrive during a discrete time period prior to the start time of the event and would leave the site during a discrete time period upon the conclusion of the event. Although some of these events could occur during the weekend or during other off-peak periods all incoming traffic has been assumed to occur during the weekday AM peak hour and all outgoing traffic has been assumed to occur during the PM peak hour. It is assumed that during a corporate retreat, banquet, or similar event that all, or a majority, of the entire site will be reserved for the event and closed to the public.

A maximum capacity corporate retreat is expected to be roughly 175 people. Of the 175 people expected at a corporate retreat type event, 75 are expected to arrive during non-peak times and stay within the cabins and hotel lodgings while the other 100 guests will arrive during the AM peak hour and leave during the PM peak. Assuming an average vehicle capacity of two persons per car, a corporate event with 100 guests would generate roughly 50 trips arriving during the AM peak hour and leaving during the PM peak hour.

4.2 Trip Generation – Site B

Site B includes a four-storey senior apartment building with 45 dwelling units.

Trip generation assumptions have been made for the proposed development and are based on the Institute of Transportation Engineers' (ITE) *Trip Generation Manual* (11th Edition). The proposed development was estimated using the ITE code 252 (Senior Adult Housing - Multifamily).

Table 3: Trip Generation - Site B

Dwelling Type	Land Use Code	ITE Code	Units	AM Peak		PM Peak			
Type	Code	Code		IN	OUT	TOT	IN	OUT	TOT
Senior Apartment	Senior Adult Housing - Multifamily	252	45	3	6	9	6	5	11

The subject site is expected to generate 9 vehicle trips (3 in and 6 out) during the AM peak hour and 11 vehicle trips (6 in and 5 out) during the PM peak hour.

Trips from Site B have been applied to all Site A scenarios that have been identified.

4.3 Trip Distribution

The distribution of apartment trips has been derived based on the existing residential commuter traffic patterns of traffic leaving the study area during the AM peak hour and entering the study area during the PM peak hour and is described as follows:

- 15% to/from the north via Martin Street
- 50% to/from the south via Martin Street
- 35% to/from the south via Union Street

Trips generated by weddings or other large events are expected to enter the site using the above distribution during the AM and PM peak hours.

4.4 Trip Assignment

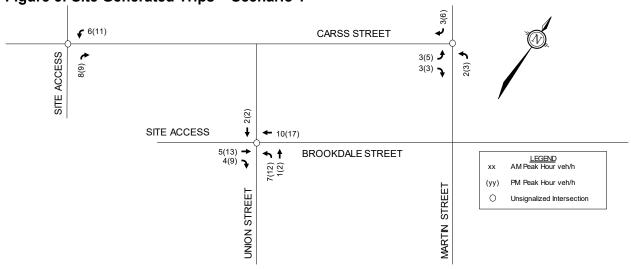
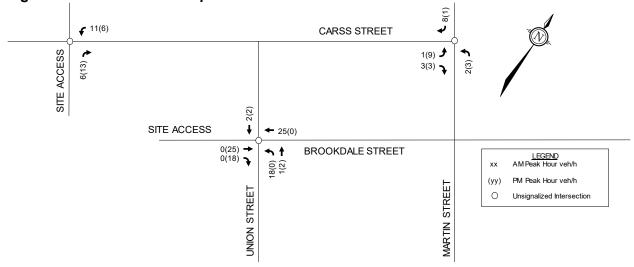

Based on the layout of the site and logical routing assumptions all trips generated by the proposed development have been assigned to the accesses at Carss Street and Union Street. All traffic generated by Site B has been assigned to the access on Carss Street. A summary of the percentage of trips assigned to each access for Site A can be seen in the following table.

Table 4: Trip Assignment Summary

Distribution	Access Assigned To				
Distribution	Carss Street	Union Street			
North via Martin Street	100%	0%			
South via Martin Street	0%	100%			
South via Union Street	7 0%	100%			

Traffic generated by the proposed site for all scenarios during the 2027 build-out year is shown in **Figures 3, 4, and 5**.


Figure 3: Site Generated Trips - Scenario 1

(6)0 **€** 3(14) CARSS STREET 1(1) SITE ACCESS 6(5) 3(3) 2(2) SITE ACCESS ŧ **←** 0(25) 0(0) **BROOKDALE STREET ↑** † LEGEND AM Peak Hour veh/h 0(0) 1(2) PM Peak Hour veh/h (yy) MARTIN STREET UNION STREET Unsignalized Intersection

Figure 4: Site Generated Trips - Scenario 2

Figure 5: Site Generated Trips - Scenario 3

5.0 **BACKGROUND TRAFFIC CONDITIONS**

5.1 **Historic Growth**

From the 2024 MMTMP the population of Mississippi Mills is expected to increase by approximately 2% per year. From Appendix E of the 2024 MMTMP, Martin Street, north of Almonte has an existing mid-block AADT of 1,200 veh/day and a long term (15-25 years) AADT of 1,250.

To provide a conservative analysis, a growth rate of 2% was applied to through traffic along Martin Street and a growth rate of 1% was applied to Carss Street and Union Street.

5.2 **Other Area Developments**

A review of other area development traffic has been conducted, per the developments listed in Section 3.0. Traffic generated by the Hilan Village development have been included in the 2032

background traffic volumes. Relevant excerpts of the traffic studies associated with the developments below are included in **Appendix C**.

Background traffic volumes for the 2027 buildout year and the 2032 horizon year can be found in **Figures 6** and **7**, respectively.

Figure 6: 2027 Background Traffic Volumes

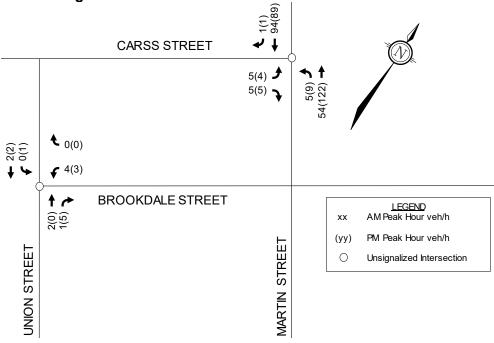
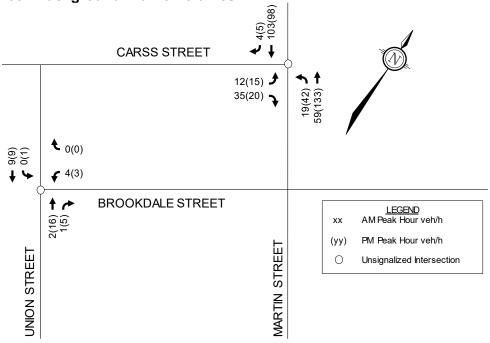



Figure 7: 2032 Background Traffic Volumes

Total traffic volumes for the 2027 build out year and 2032 horizon year have been calculated by adding the site generated traffic volume scenarios with the projected background traffic volumes. Total traffic volumes for 2027 and 2032 are shown in **Figures 8** to **13**.

Figure 8: 2027 Total Traffic - Scenario 1

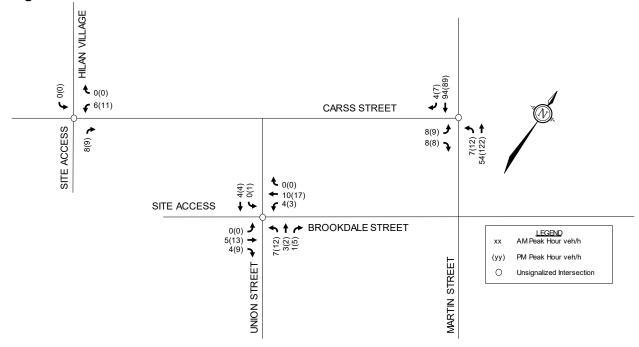


Figure 9: 2027 Total Traffic - Scenario 2

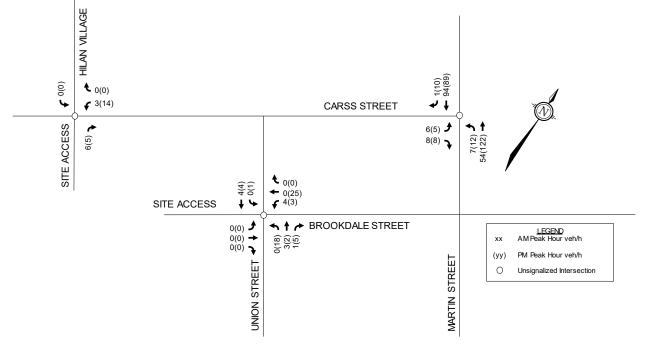


Figure 10: 2027 Total Traffic - Scenario 3

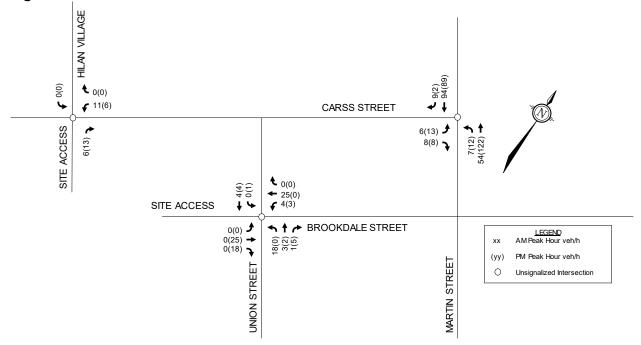


Figure 11: 2032 Total Traffic - Scenario 1

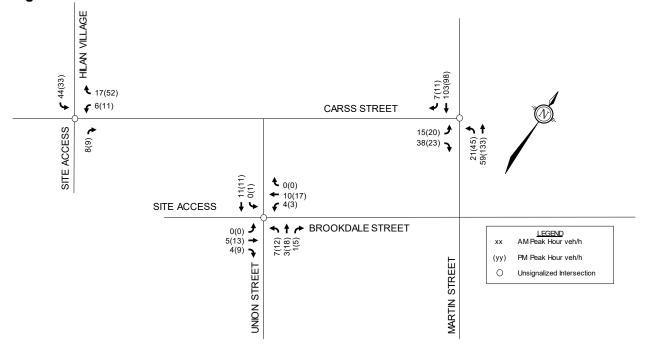


Figure 12: 2032 Total Traffic – Scenario 2

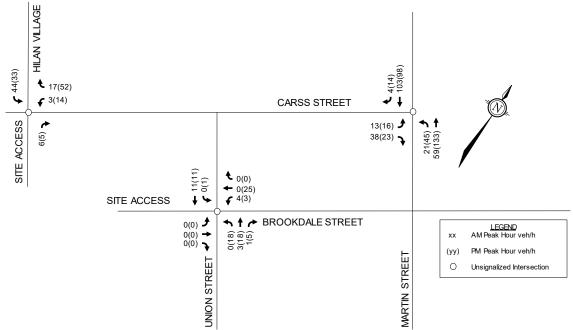
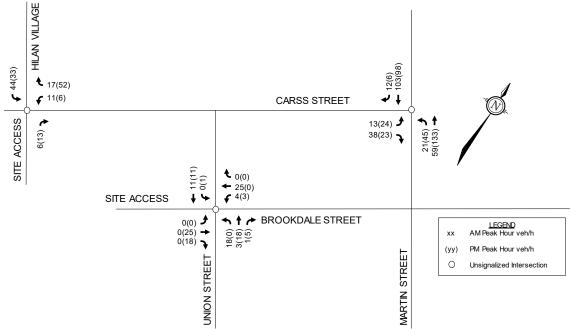



Figure 13: 2032 Total Traffic - Scenario 3

6.0 INTERSECTION OPERATING CONDITIONS

6.1 Existing Traffic Operations

Intersection capacity analysis has been completed for the existing traffic conditions. The results of the analysis are summarized in the following table for the weekday AM and PM peak hours. Detailed synchro reports are included in **Appendix C**.

Table 5: Analysis Results - Existing Traffic Conditions

Intersection		AM Peak		PM Peak			
Intersection	Delay	LOS	Mvmt	Delay	LOS	Mvmt	
Union Street/Brookdale Street	7 sec	Α	All	7 sec	Α	All	
Martin Street/Carss Street	9 sec	Α	EB	9 sec	Α	EB	

All movements at study area intersections are currently operating with an acceptable LOS.

6.2 Background Traffic Operations

Operating conditions at the study area intersections are summarized in **Table 8** for the 2027 and 2032 weekday AM and PM peak periods. Detailed reports are included in **Appendix C.**

Table 6: Analysis Results - Background Traffic Conditions

Intersection		AM Pea	ak	PM Peak				
intersection	Delay	LOS	Mvmt	Delay	LOS	Mvmt		
2027 Background Traffic								
Union Street/Brookdale Street	7 sec	Α	All	7 sec	Α	All		
Martin Street/Carss Street	9 sec	Α	EB	9 sec	Α	EB		
2032 Background Traffic	2032 Background Traffic							
Union Street/Brookdale Street	7 sec	Α	All	7 sec	Α	All		
Martin Street/Carss Street	9 sec	Α	EB	10 sec	Α	EB		

All movements at study area intersections continue to operate with an acceptable LOS under 2027 and 2032 background traffic conditions.

6.3 Total Traffic Operations

Operations at the study area intersections and the proposed accesses have been evaluated for the 2027 and 2032 total traffic scenarios for all three scenarios, as summarized in the following tables. Detailed reports are included in **Appendix C**.

Table 7: Analysis Results - Total Traffic Conditions - Scenario 1

	AM Peak			PM Peak		
Intersection	Delay or V/C	LOS	Mvmt	Delay or V/C	LOS	Mvmt
2027 Total Traffic						
Union Street/Brookdale Street/Site Access	7 sec	Α	All	7 sec	Α	All
Martin Street/Carss Street	9 sec	Α	EB	10 sec	Α	EB
Carss Street/Site Access/Hilan Village	8 sec	Α	NB	8 sec	Α	NB
2032 Total Traffic						
Union Street/Brookdale Street/Site Access	7 sec	Α	All	8 sec	Α	NB
Martin Street/Carss Street	9 sec	Α	EB	10 sec	В	EB
Carss Street/Site Access/Hilan Village	9 sec	Α	SB	9 sec	А	SB

Table 8: Analysis Results - Total Traffic Conditions - Scenario 2

		AM Peak		PM Peak		
Intersection	Delay or V/C	LOS	Mvmt	Delay or V/C	LOS	Mvmt
2027 Total Traffic						
Union Street/Brookdale Street/Site Access	7 sec	Α	All	7 sec	Α	All
Martin Street/Carss Street	9 sec	Α	EB	9 sec	Α	EB
Carss Street/Site Access/Hilan Village	8 sec	Α	NB	8 sec	Α	NB
2032 Total Traffic						
Union Street/Brookdale Street/Site Access	7 sec	Α	All	8 sec	Α	NB
Martin Street/Carss Street	9 sec	Α	EB	10 sec	Α	EB
Carss Street/Site Access/Hilan Village	9 sec	Α	SB	9 sec	Α	SB

Table 9: Analysis Results - Total Traffic Conditions - Scenario 3

Table C. Allarysis Results Total	i iiuiiio o			-		
		AM Peak		PM Peak		
Intersection	Delay or V/C	LOS	Mvmt	Delay or V/C	LOS	Mvmt
2027 Total Traffic						
Union Street/Brookdale Street/Site Access	7 sec	Α	All	7 sec	Α	All
Martin Street/Carss Street	9 sec	Α	EB	10 sec	Α	EB
Carss Street/Site Access/Hilan Village	8 sec	Α	NB	8 sec	Α	NB
2032 Total Traffic						
Union Street/Brookdale Street/Site Access	7 sec	Α	All	8 sec	Α	NB
Martin Street/Carss Street	9 sec	Α	EB	10 sec	В	EB
Carss Street/Site Access/Hilan Village	9 sec	Α	SB	9 sec	Α	SB

All movements at all study area intersections are expected to operate with acceptable LOS during all scenarios during the 2027 and 2032 total traffic scenarios. Site generated traffic is not anticipated to have a significant impact on the operating conditions within the study area.

A left turn lane warrant analysis was conducted to confirm if a northbound left turn lane would be required at the Martin Street/Carss Street intersection under 2032 total traffic conditions from all three scenarios. Based on a design speed of 70km/hr, the left turn lane warrants indicated that a northbound left turn lane at the Martin Street/Carss Street intersection would not be required. It is noteworthy that due to low traffic volumes on Martin Street, a left turn lane is also not anticipated to be warranted at the Martin Street/Brookdale Street intersection. Left turn lane warrants are included in **Appendix D**.

Per Table 21 of the 2024 MMTMP, a typical local road has an optimal traffic volume of less than 120 vehicles per hour. All local roadways (Brookdale Street, Carss Street, and Union Street)

within proximity of the subject site are expected to have less than 120 vehicles per hour during the peak hours.

7.0 ON-SITE DESIGN

7.1 Site Access

The access to Site A along Carss Street will be located at the existing access to the Pinehurst Manor. Two accesses along Carss Street are proposed as part of Site B, one access will be for underground parking and the other to an at-grade parking lot. One access is proposed to Union Street as part of Site A opposite Brookdale Street.

Intersection sight distance (ISD) at the proposed accesses have been determined using the Transportation Association of Canada (TAC) *Geometric Design Guidelines for Canadian Roads*. The ISD requirements, based on a design speed of 60km/h, is as follows:

Left Turn from Minor Road
 Right Turn from Minor Road
 130 metres
 110 metres

As the proposed Union Street access meets Union Street at a perpendicular angle and no sightline obstruction have been identified based on a desktop review, available sightlines are within recommended guidelines to allow safe all directional access to the development.

As the proposed and existing Carss Street accesses meets Carss Street at a perpendicular angle and no sightline obstruction have been identified based on a desktop review, available sightlines are within recommended guidelines to allow safe all directional access to the development.

Along Carss Street the proposed accesses to Site B are spaced roughly 10m away from each other. Based on Table 8.9.2 of the TAC guidelines a property with 51m-151m of frontage is permitted three accesses. As Site B has greater than 50m of frontage, the proposed two accesses are acceptable. Along local roadways, adjacent low volume driveways for residential properties are recommended to have a 1m minimum spacing per TAC guidelines. As the driveways are not expected to handle a significant amount of traffic and are spaced 10m away this is assumed to be sufficient. A further review of the access design will be completed as part of a future Site Plan application.

The proposed Union Street access to Site A intersects with the Ottawa Valley Rec Trail, approximately 15-20m west of Union Street. To ensure pedestrian and cyclist safety stop signs and street lighting along the access are recommended on both sides of the Ottawa Valley Rec Trail. Further details of the access design will be provided as part of a future Site Plan application.

7.2 Circulation

All streets within the site have a proposed platform width of 6.0m. Pathways will be provided throughout the site connecting the various uses. Lay-by's will be provided in front of the restaurant and spa uses.

Fire route access is provided throughout the proposed development.

7.3 Parking

The subject site is located in the Almonte area of the Municipalities Zoning By-law. Table 9.2 of the Municipalities Zoning By-law was used to determine the minimum spaces for each of the applicable land uses for vehicle parking and Table 9.5 was used for bicycle parking.

An evaluation of the proposed parking versus the requirements are summarized in **Table 9**.

Table 10: Parking Requirements

rable 10. Parking Requirement			
Land Use	Rate	Units/GFA	Required
Minimum Vehicle Parking Require	ements		
Apartment – Low Rise	1.2 per dwelling unit (residents) 0.2 per dwelling unit (visitor)	45	63
Hotel	1.0 per guest unit	62	62
Accessory Dwelling	0.5 per unit	1	1
Restaurant – Full Service	3 for first 50m² of gross floor area plus 10 per 100m² of gross floor area over 50m² of gross floor area	335m²	32
Spa (Personal Service Business)	2.5 per 100m ² of gross floor area	560m²	14
Place of Assembly	10 per 100m² of gross floor area of assembly area	520m²	53
			225
Minimum Bicycle Parking Require	ements		
Apartment – Low Rise	0.5 per dwelling unit	45	23
Restaurant	1 per 250m ² of GFA	177m²	1
Spa (Personal Service Business)	1 per 500m ² of GFA	560m²	1
Hotel and Cabins	1 per 1,000m ² of GFA	1,800m ²	2
		Total	27

Based on the Concept Plan, the proposed development includes 184 vehicle parking spaces for the non-residential uses and 63 vehicle parking spaces for the future seniors apartments meeting the ZBL requirements.

Bicycle parking for the proposed development will be confirmed as the Concept Plan is further refined for a future Site Plan application.

8.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the foregoing analysis, the main conclusions and recommendations of this report are as follows:

Forecasting

 Scenario One studies the impacts that typical day-to-day operations would have on the study area. Day-to-day uses include trips associated with the planned hotel, restaurant, and spa uses. This scenario assumes site generated traffic arriving and leaving during the AM and PM peak hours and that there will be some internal capture between the three different land uses. Under Scenario One, the development is expected to generate 30 vehicle trips (20 in and 10 out) during the AM peak hour and 60 vehicle trips (34 in and 26 out) during the PM peak hour.

 Scenario Two studies the impacts that a wedding or similar event would have on the study area. Assuming an average vehicle capacity of two persons per car, a wedding with 100 guests arriving during the PM peak hour would generate roughly 50 inbound vehicle trips.

- Scenario Three studies the impacts that a corporate retreat, banquet, or similar type event would have on the study area. During this scenario it is assumed that vehicles would arrive during a discrete time period prior to the start time of the event and would leave the site during a discrete time period upon the conclusion of the event. Assuming an average vehicle capacity of two persons per car, a corporate event with 100 guests would generate roughly 50 trips arriving during the AM peak hour and leaving during the PM peak hour.
- Site B includes a four-storey senior apartment building with 45 dwelling units. The subject site is expected to generate 9 vehicle trips (3 in and 6 out) during the AM peak hour and 11 vehicle trips (6 in and 5 out) during the PM peak hour. Trips from Site B have been applied to all Site A scenarios that have been identified.

Total Traffic Operations

- All movements at all study area intersections are expected to operate with acceptable LOS during all scenarios during the 2027 and 2032 total traffic scenarios. Site generated traffic is not anticipated to have a significant impact on the operating conditions within the study area.
- A left turn lane warrant analysis was conducted to confirm if a northbound left turn lane would be required at the Martin Street/Carss Street intersection under 2032 total traffic conditions from all three scenarios. Based on a design speed of 70km/hr, the left turn lane warrants indicated that a northbound left turn lane at the Martin Street/Carss Street intersection would not be required.
- The total traffic volumes on all roadways within the study area are expected to be within the optimal thresholds for a local road identified in the 2024 MMTMP.

Development Design

- As the proposed Union Street access meets Union Street at a perpendicular angle and no sightline obstruction have been identified based on a desktop review, available sightlines are within recommended guidelines to allow safe all directional access to the development.
- As the proposed and existing Carss Street accesses meets Carss Street at a
 perpendicular angle and no sightline obstruction have been identified based on a desktop
 review, available sightlines are within recommended guidelines to allow safe all directional
 access to the development.
- As the proposed driveways to Carss Street are not expected to handle a significant amount of traffic and are spaced 10m away this is assumed to be sufficient.
- The proposed Union Street access to Site A intersects with the Ottawa Valley Rec Trail, approximately 15-20m west of Union Street. To ensure pedestrian and cyclist safety stop signs and street lighting along the access are recommended on both sides of the Ottawa Valley Rec Trail.

 All streets within the site have a proposed platform width of 6.0m. Pathways will be provided throughout the site connecting the various uses. Lay-by's will be provided in front of the restaurant and spa uses.

• Fire route access is provided throughout the proposed development.

<u>Parking</u>

 The proposed development includes 184 vehicle parking spaces for the non-residential uses and 63 vehicle parking spaces for the future seniors apartments meeting the ZBL requirements.

Based on the foregoing, the proposed development can be recommended from a transportation perspective.

NOVATECH

Prepared by:

Trevor Van Wiechen, P.Eng. Project Engineer | Transportation

Reviewed by:

Brad Byvelds, P.Eng. Senior Project Manager | Transportation

APPENDIX A Proposed Site Plan

SITE A	A CALCULATION	48	SIT	E B CALCULATIO	VS .
ZONE: RESIDENTIAL FOURTH DEN	SITY, SPECIAL PROVISIONS (R4	-yy) zone	ZONE: RESIDENTIAL FOURTH	DENSITY, SPECIAL PROVISIONS (R4	1-XX) ZONE
BY-LAW CATEGORY LOT AREA LOT FRONTAGE LOT COV BUILDING LOT COV CANOPY LOT. COV. TOTAL LANDSCAPED AREA	REQUIREMENT 600 m ² MIN. 30 m MIN 45% (18,167 m ²) MAX.	PROVIDED 40,423.0 m ² 2,835.9 m ² 122.5 m ² 7.3% (2,958.4 m ²)	BY-LAW CATEGORY LOT AREA LOT FRONTAGE LOT COVERAGE AMENITY SPACE LANDSCAPED AREA	REQUIREMENT 600 m ² MIN. 30.0 m MIN. 40% (1,750 m ²) MAX.	PROVIDED 3,888.2 m ² 54.0 m MIN. 1,012.6 m ² (26.0%)
FRONT YARD (NW) INTERIOR YARD (NE) INTERIOR YARD (SE-EP ZONE) REAR YARD (SE-EP ZONE) MAX. BLD. HEIGHT	5.0 m 6.0 m 30.0 m 30.0 m 11 m	6.0 m 6.0 m 30.0 m 30.0 m 14 m	FRONT YARD INTERIOR YARD (N) INTERIOR YARD (S) REAR YARD MAX. BLD. HEIGHT	5.0 m 6.0 m 6.0 m 7.5 m 11 m	5.0 m 6.0 m 6.0 m 7.5 m 15 m

GENERAL SITE INFORMATION

PROPERTY AREA: 44,312 m² (476,966 SF)

BUILDING (SITE PART)

PINEHURST MANOR

CARRIAGE HOUSE

BANQUET BASEMENT

BANQUET HALL

RESTAURANT BASEMENT

RESTAUR. WITHIN MANOR RESTAURANT

RESTAURANT

SPA HOTEL

LEGAL PART OF LOTS 16 AND 17 CONCESSION 9 GEOGRAPHIC TOWNSHIP OF RAMSAY, FORMERLY TOWN OF ALMONTE, NOW IN THE TOWN OF MISSISSIPPI MILLS, COUNTY OF LANARK

SURVEY: DRAWING BASED ON SURVEY BY MCINTOSH PERRY SURVEYING INC. DATED MARCH 4, 2019, JOB NUMBER 18-4381, DRAWING D18-4381

- PINEHURST LODGE SENIORS APARTMENTS 4 STOREYS \ 45 APARTMENTS 1,012.6 m² (10,900 SF) **24** UNDERGROUND ENTRANCE CANOPY -PARKING STALLS <u>SITE B</u> — ... PIN 05088-0209(LT) 3,888.2 m² (0.96 ac) MAINTENANCE BUILDING 1 STOREYS \ 116.1 m² (1,250 SF) PRIVATE CABINS 603.9 m²\(6,500 SF) ENTRANCE CÂNOPY — 101.7 m² (1,095 SF) `**CARRIAGE HOUSE** — 2 STOREYS + BASEMENT APARTMENT / AMENITY / OFFICES & ENTRANCE CANOPY —— 20.8 m² (224 SF) HOTEL -2 STOREYS 8 GUEST ROOMS 167.2 m² (1,800 SF) - SPA & HOTEL 12 GUEST ROOMS 4 STOREYS \ 278.7 m² (3,000 SF) C27 RESTAURANT BANQUET HALL -BASEMENT CONF. AREA 3rd FLOOR HOTEL -121.7 m² (1,310 SF) PRIVATE CABINS 185.8 m² (2,000 SF) 3 STOREYS, 7 UNITS 348.4 m² (3,750 SF) PINEHURST MANOR 4-STOREYS 8 GUEST ROOMS 314.9/m² (3,390 SF) POOLS, SAUNA, STEAM ROOM, INDOOR-OUTDOOR KITCHEN — 55.1 m² 40,423.0 m² (9.99 ac) VERANDAH (594 SF) 75.3 m² (811 SF) BRIDGE — PRIVATE CABINS
10 UNITS
464.5 m² (5,000 SF)

ISSUED FOR

1	2024-10-29	CONCEPT SITE PLAN (ver.6)
2	2024-02-18	CONCEPT SITE PLAN (ver.7)
3	2025-03-10	CONCEPT SITE PLAN (ver.8)
4	2025-03-24	CONCEPT SITE PLAN (ver.9)
5	2025-04-11	CONCEPT SITE PLAN (ver.10)
6	2025-08-07	CONCEPT SITE PLAN (ver.11)

METRI

THIS DRAWING IS COPYRIGHTED AND MUST NOT BE USED, REPRODUCED, OR REVISED WITHOUT WRITTEN PERMISSION.

ALL DIMENSIONS ARE IN METERS UNLESS OTHERWISE NOTED. VERIFY DIMENSIONS.
DO NOT SCALE THIS DRAWING.

REPORT INCONSISTENCIES AND OMISSIONS TO THE CONSULTANT FOR CLARIFICATION BEFORE COMMENCING WITH THE WORK.

DEVIATIONS FROM THE CONTRACT DOCUMENTS WITHOUT WRITTEN APPROVAL FROM THE CONSULTANT ARE SUBJECT TO CORRECTION AT THE CONTRACTOR'S EXPENSE.

ARCHITECT & PRIME CONSULTANT

GRAFF ARCHITECTURE 1358 RIDEAU FERRY ROAD PERTH, ONTARIO K7H 3C7 Tel: (613)-900-1963

KEYPLAN

SEA

PINEHURST DEVELOPMENT

39 CARSS STREET ALMONTE, ON K0A 1A0

CONCEPT SITE PLAN

DRAWN: GJG PLOT DATE: 2025-08-27 3:02:20 PM

A1.00

1 SITE PLAN
1:800

BANQUET VERANDAH PLACE OF ASSEMBLY NO PARKING LOAD **BANQUET HOTEL** RENTAL SUITE (HOTEL) 1x / GUEST ROOM HOTEL RENTAL SUITE (HOTEL) 1x / GUEST ROOM 8 UNITS 27 UNITS **CABINS** RENTAL SUITE (HOTEL) 1x / GUEST ROOM MAINTENANCE BUILDING ACCESSORY USE NO PARKING LOAD N/A TOTAL 162 <u>Part B</u> Apartment **DWELLINGS** 1.2x / DWELLING 45 SUITES VISITOR 0.2x / DWELLING TOTAL 63

NOTE: SOME ITEMS LISTED WITH MULTIPLE ENTRIES (RESTAURANT / BANQUET HALL) ARE CONTIGUOUS SUITES AND NOT TO BE INTERPRETED AS SEPARATE ENTITIES

UNIT RATE

10x /100m²

2.5x / 100 m²

1x / GUEST ROOM

10x / 100 m² GFA

10x / 100 m² GFA

BED & BREAKFAST

B&B AMENITY SPACE

RENTAL SUITE (HOTEL)

PLACE OF ASSEMBLY

PLACE OF ASSEMBLY

ACCESSORY DWELLING

RESTAURANT

WELLNESS SPA

1.0x / GUEST ROOM

NO PARKING LOAD 0.5x / DWELLING

 $3x / 50m^2 + 10x / 100m^2$

PARKING CALCULATIONS

UNITS / AREA (m²)

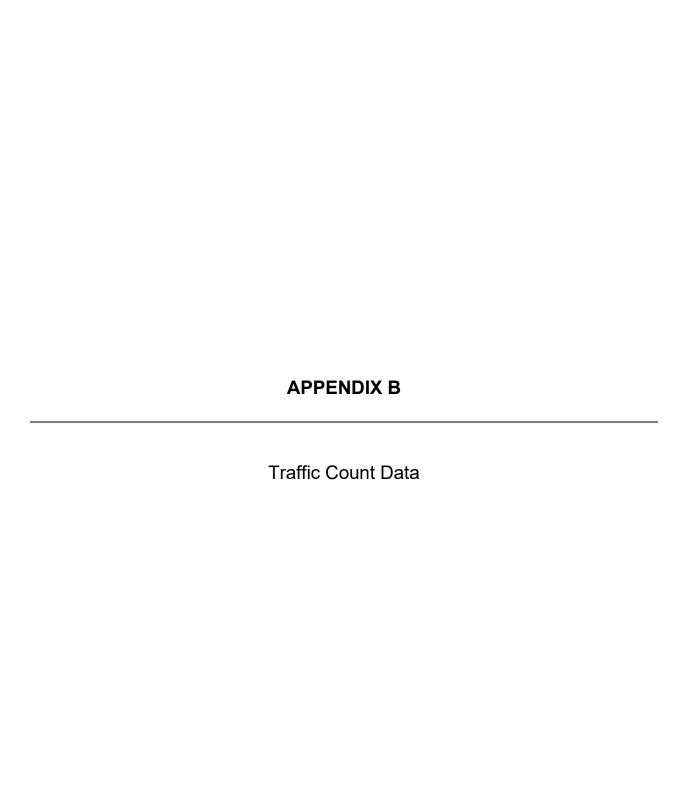
8 GUEST ROOMS

176.8 m² GFA

~158 m² GFA

557.4 m² GFA

174.2 m²

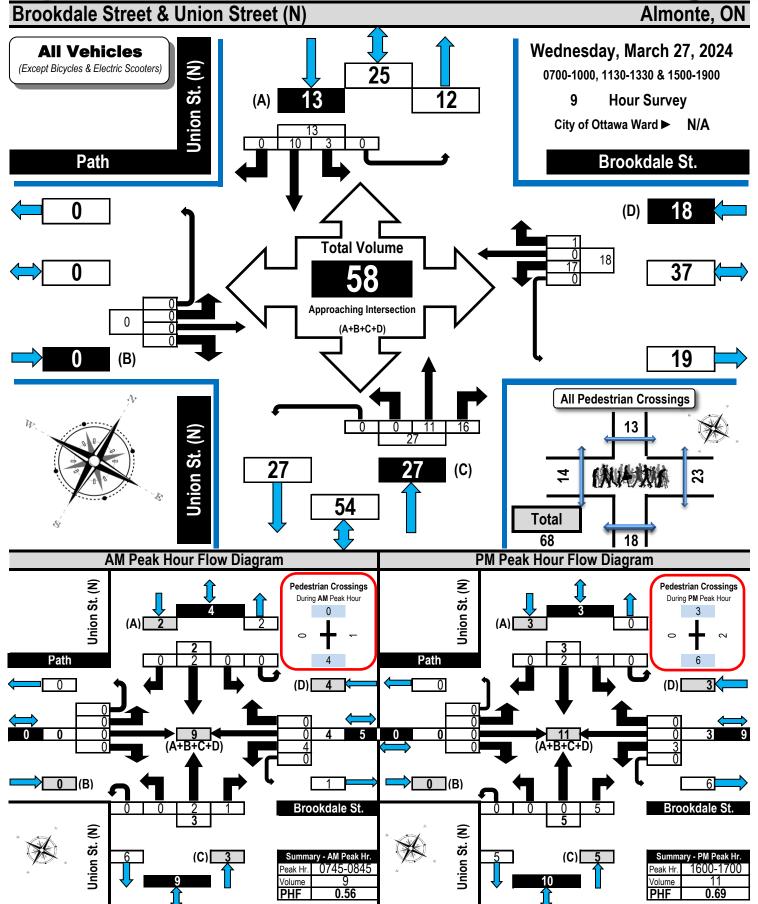

348.4 m²

1x UNIT (MANAGER SUITE)

REQ'D SPACES

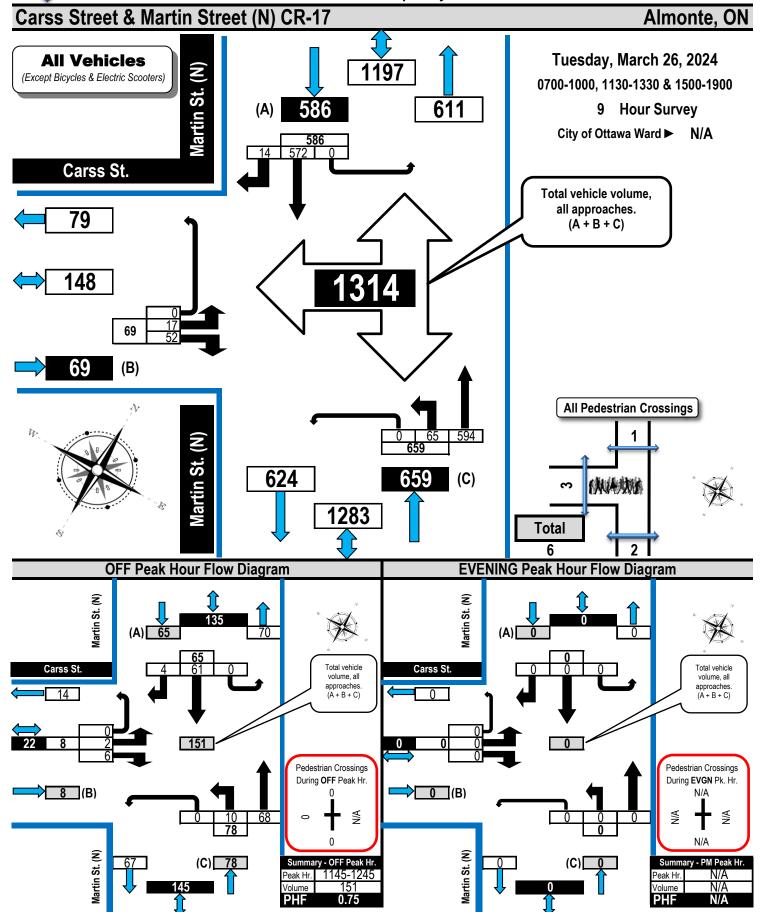
SPACES PROVIDED

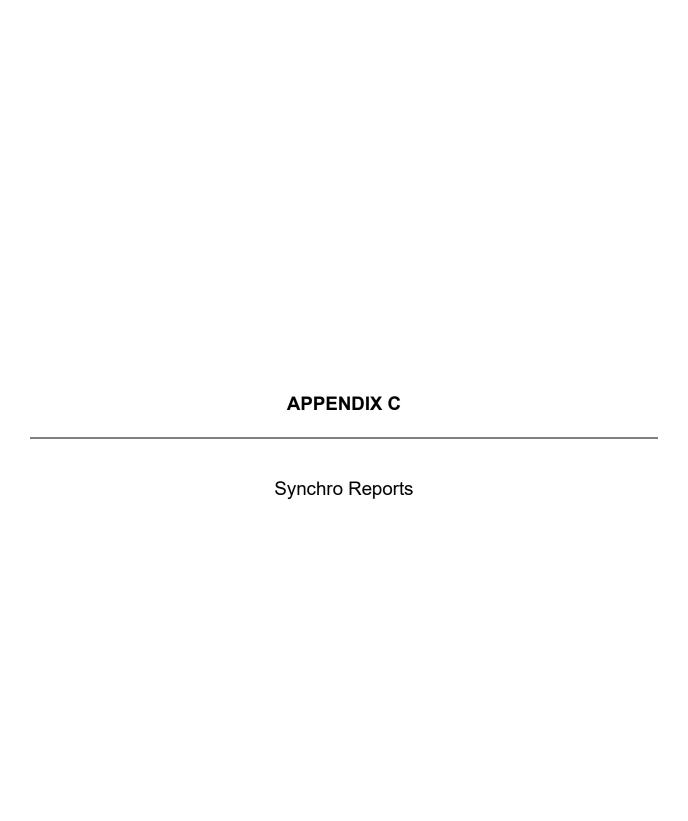
24012P01



Turning Movement Count Summary, AM and PM Peak Hour Flow Diagrams

All Vehicles Except Bicycles





Turning Movement Count Summary, OFF and EVGN Peak Hour Flow Diagrams

All Vehicles Except Bicycles

1_Existing AM 08/18/2025

1_Extouring 7 tivi							_
	•	•	1	†	↓	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	W			4	1		
Traffic Volume (veh/h)	5	5	5	52	90	1	
Future Volume (Veh/h)	5	5	5	52	90	1	
Sign Control	Stop		- U	Free	Free	'	
Grade	0%			0%	0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	6	6	6	58	100	1	
, , ,	U	U	U	30	100	Į.	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	170	100	101				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	170	100	101				
tC, single (s)	6.5	6.3	4.1				
tC, 2 stage (s)							
tF (s)	3.6	3.4	2.2				
p0 queue free %	99	99	100				
cM capacity (veh/h)	798	933	1479				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	12	64	101				
Volume Left	6	6	0				
Volume Right	6	0	1				
cSH	861	1479	1700				
Volume to Capacity	0.01	0.00	0.06				
Queue Length 95th (m)	0.3	0.1	0.0				
Control Delay (s)	9.2	0.7	0.0				
Lane LOS	Α	A	0.0				
Approach Delay (s)	9.2	0.7	0.0				
Approach LOS	3.2 A	0.1	0.0				
	А						
Intersection Summary			0.0				
Average Delay			0.9				
Intersection Capacity Utiliza	ation		17.3%	IC	CU Level c	t Service	
Analysis Period (min)			15				

1_Existing AM 08/18/2025

	۶	→	•	1	←	4	•	<u>†</u>	<i>></i>	\	 	 ✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	0	0	4	0	0	0	2	1	0	2	0
Future Volume (vph)	0	0	0	4	0	0	0	2	1	0	2	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	0	0	4	0	0	0	2	1	0	2	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	0	4	3	2								
Volume Left (vph)	0	4	0	0								
Volume Right (vph)	0	0	1	0								
Hadj (s)	0.00	0.23	0.31	0.03								
Departure Headway (s)	3.9	4.1	4.2	3.9								
Degree Utilization, x	0.00	0.00	0.00	0.00								
Capacity (veh/h)	914	862	839	906								
Control Delay (s)	6.9	7.2	7.2	7.0								
Approach Delay (s)	0.0	7.2	7.2	7.0								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.1									
Level of Service			Α									
Intersection Capacity Utilizati	on		14.9%	IC	U Level c	of Service			Α			
Analysis Period (min)			15									

Synchro 11 Report Page 2 2_Existing PM 08/18/2025

Z_EXISTING T W						
	•	\rightarrow	•	†	ţ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4	1>	
Traffic Volume (veh/h)	4	5	9	117	90	1
Future Volume (Veh/h)	4	5	9	117	90	1
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
		6	10	130	100	0.90
Hourly flow rate (vph) Pedestrians	<u>4</u> 1	Ü	10	130	100	I
				•		
Lane Width (m)	3.7			3.7		
Walking Speed (m/s)	1.1			1.1		
Percent Blockage	0			0		
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	252	102	102			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	252	102	102			
tC, single (s)	6.5	6.3	4.1			
tC, 2 stage (s)	0.0	0.0	1.1			
tF (s)	3.6	3.4	2.2			
p0 queue free %	99	99	99			
	714	929	1476			
cM capacity (veh/h)	/ 14	929				
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	10	140	101			
Volume Left	4	10	0			
Volume Right	6	0	1			
cSH	830	1476	1700			
Volume to Capacity	0.01	0.01	0.06			
Queue Length 95th (m)	0.3	0.2	0.0			
Control Delay (s)	9.4	0.6	0.0			
Lane LOS	9.4 A	0.0 A	0.0			
Approach Delay (s)	9.4	0.6	0.0			
		0.0	0.0			
Approach LOS	Α					
Intersection Summary						
Average Delay			0.7			
Intersection Capacity Utiliz	ation		24.0%	IC	CU Level o	f Service
Analysis Period (min)			15			
r.i.alyolo i orloa (ililii)			10			

2_Existing PM 08/18/2025

	•	→	*	1	+	•	•	†	/	\	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	0	0	3	0	0	0	0	5	1	2	0
Future Volume (vph)	0	0	0	3	0	0	0	0	5	1	2	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	0	0	3	0	0	0	0	6	1	2	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	0	3	6	3								
Volume Left (vph)	0	3	0	1								
Volume Right (vph)	0	0	6	0								
Hadj (s)	0.00	0.23	-0.09	0.10								
Departure Headway (s)	3.9	4.2	3.8	4.0								
Degree Utilization, x	0.00	0.00	0.01	0.00								
Capacity (veh/h)	912	860	938	891								
Control Delay (s)	6.9	7.2	6.8	7.0								
Approach Delay (s)	0.0	7.2	6.8	7.0								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.0									
Level of Service			Α									
Intersection Capacity Utilizati	on		15.8%	IC	U Level c	of Service			Α			
Analysis Period (min)			15									

	٠	•	4	†	↓	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥			4	1		
Traffic Volume (veh/h)	5	5	5	54	94	1	
Future Volume (Veh/h)	5	5	5	54	94	1	
Sign Control	Stop			Free	Free	<u>'</u>	
Grade	0%			0%	0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	5	5	5	54	94	1.00	
Pedestrians	J	J	J	J -1	37	ı	
Lane Width (m)							
. ,							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)				Mana	Mana		
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked	450	0.4	0.5				
vC, conflicting volume	158	94	95				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	158	94	95				
tC, single (s)	6.5	6.3	4.1				
tC, 2 stage (s)							
tF (s)	3.6	3.4	2.2				
p0 queue free %	99	99	100				
cM capacity (veh/h)	812	941	1486				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	10	59	95				
Volume Left	5	5	0				
Volume Right	5	0	1				
cSH	871	1486	1700				
Volume to Capacity	0.01	0.00	0.06				
Queue Length 95th (m)	0.3	0.1	0.0				
Control Delay (s)	9.2	0.7	0.0				
Lane LOS	A	A	0.0				
Approach Delay (s)	9.2	0.7	0.0				
Approach LOS	Α	0.7	0.0				
Intersection Summary							
			0.8				
Average Delay	-4:			10	NIII access	4 Camilia	
Intersection Capacity Utiliza	auon		17.4%	IC	CU Level c	or Service	
Analysis Period (min)			15				

21_Background AM 2027

	٠	→	*	•	←	•	4	†	/	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	0	0	4	0	0	0	2	1	0	2	0
Future Volume (vph)	0	0	0	4	0	0	0	2	1	0	2	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	4	0	0	0	2	1	0	2	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	0	4	3	2								
Volume Left (vph)	0	4	0	0								
Volume Right (vph)	0	0	1	0								
Hadj (s)	0.00	0.23	0.31	0.03								
Departure Headway (s)	3.9	4.1	4.2	3.9								
Degree Utilization, x	0.00	0.00	0.00	0.00								
Capacity (veh/h)	914	862	839	906								
Control Delay (s)	6.9	7.2	7.2	7.0								
Approach Delay (s)	0.0	7.2	7.2	7.0								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.1									
Level of Service			Α									
Intersection Capacity Utiliza	ition		14.9%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	•	•	†	+	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	1 >	
Traffic Volume (veh/h)	4	5	9	122	89	1
Future Volume (Veh/h)	4	5	9	122	89	1
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	4	5	9	122	89	1
Pedestrians	1			1		
Lane Width (m)	3.7			3.7		
Walking Speed (m/s)	1.1			1.1		
Percent Blockage	0			0		
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				140110	140110	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	230	92	91			
vC1, stage 1 conf vol	200	JZ	31			
vC2, stage 2 conf vol						
vCu, unblocked vol	230	92	91			
tC, single (s)	6.5	6.3	4.1			
tC, 2 stage (s)	0.0	0.0	7.1			
tF (s)	3.6	3.4	2.2			
p0 queue free %	99	99	99			
cM capacity (veh/h)	735	943	1490			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	9	131	90			
Volume Left	4	9	0			
Volume Right	5	0	1			
cSH	838	1490	1700			
Volume to Capacity	0.01	0.01	0.05			
Queue Length 95th (m)	0.2	0.1	0.0			
Control Delay (s)	9.3	0.6	0.0			
Lane LOS	А	Α				
Approach Delay (s)	9.3	0.6	0.0			
Approach LOS	Α					
Intersection Summary						
Average Delay			0.7			
Intersection Capacity Utiliza	ntion		24.3%	IC	CU Level o	of Service
Analysis Period (min)			15			2200
, maryoto i onou (illin)			10			

	•	→	*	√	+	4	•	†	/	\	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	0	0	3	0	0	0	0	5	1	2	0
Future Volume (vph)	0	0	0	3	0	0	0	0	5	1	2	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	3	0	0	0	0	5	1	2	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	0	3	5	3								
Volume Left (vph)	0	3	0	1								
Volume Right (vph)	0	0	5	0								
Hadj (s)	0.00	0.23	-0.09	0.10								
Departure Headway (s)	3.9	4.2	3.8	4.0								
Degree Utilization, x	0.00	0.00	0.01	0.00								
Capacity (veh/h)	912	861	938	891								
Control Delay (s)	6.9	7.2	6.8	7.0								
Approach Delay (s)	0.0	7.2	6.8	7.0								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.0									
Level of Service			Α									
Intersection Capacity Utiliza	tion		15.8%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	•	•	†	+	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4	1>	
Traffic Volume (veh/h)	12	35	19	59	103	4
Future Volume (Veh/h)	12	35	19	59	103	4
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	12	35	19	59	103	4
Pedestrians			10		100	'
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				INOHE	INOLIC	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	202	105	107			
vC1, stage 1 conf vol	202	103	107			
vC2, stage 2 conf vol						
vCu, unblocked vol	202	105	107			
tC, single (s)	6.5	6.3	4.1			
tC, 2 stage (s)	0.5	0.5	4.1			
	3.6	3.4	2.2			
tF (s) p0 queue free %	98	96	99			
	759	928	1471			
cM capacity (veh/h)						
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	47	78	107			
Volume Left	12	19	0			
Volume Right	35	0	4			
cSH	878	1471	1700			
Volume to Capacity	0.05	0.01	0.06			
Queue Length 95th (m)	1.3	0.3	0.0			
Control Delay (s)	9.3	1.9	0.0			
Lane LOS	Α	Α				
Approach Delay (s)	9.3	1.9	0.0			
Approach LOS	Α					
Intersection Summary						
Average Delay			2.5			
Intersection Capacity Utiliza	ation		21.1%	IC	CU Level c	f Service
Analysis Period (min)			15	10	2 2 20 7 0 7 0	
raidiyolo i onou (iliili)			10			

	۶	→	•	•	←	4	4	†	/	/	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	0	0	4	0	0	0	2	1	0	9	0
Future Volume (vph)	0	0	0	4	0	0	0	2	1	0	9	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	4	0	0	0	2	1	0	9	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	0	4	3	9								
Volume Left (vph)	0	4	0	0								
Volume Right (vph)	0	0	1	0								
Hadj (s)	0.00	0.23	0.31	0.03								
Departure Headway (s)	3.9	4.2	4.2	3.9								
Degree Utilization, x	0.00	0.00	0.00	0.01								
Capacity (veh/h)	900	858	837	906								
Control Delay (s)	6.9	7.2	7.2	7.0								
Approach Delay (s)	0.0	7.2	7.2	7.0								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.1									
Level of Service			Α									
Intersection Capacity Utilizati	on		14.9%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	•	•	•	†	+	√
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4	₽	
Traffic Volume (veh/h)	15	20	10	42	98	5
Future Volume (Veh/h)	15	20	10	42	98	5
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	15	20	10	42	98	5
Pedestrians	1			1		
Lane Width (m)	3.7			3.7		
Walking Speed (m/s)	1.1			1.1		
Percent Blockage	0			0		
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	164	102	104			
vC1, stage 1 conf vol	101	102				
vC2, stage 2 conf vol						
vCu, unblocked vol	164	102	104			
tC, single (s)	6.5	6.3	4.1			
tC, 2 stage (s)	0.0	0.0				
tF (s)	3.6	3.4	2.2			
p0 queue free %	98	98	99			
cM capacity (veh/h)	803	929	1474			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	35	52	103			
Volume Left	15	10	0			
Volume Right	20	0	5			
cSH	870	1474	1700			
Volume to Capacity	0.04	0.01	0.06			
Queue Length 95th (m)	1.0	0.2	0.0			
Control Delay (s)	9.3	1.5	0.0			
Lane LOS	Α	Α				
Approach Delay (s)	9.3	1.5	0.0			
Approach LOS	Α					
Intersection Summary						
Average Delay			2.1			
Intersection Capacity Utilizat	tion		19.9%	IC	U Level c	of Service
Analysis Period (min)			15			

	•	→	*	√	+	4	•	†	/	/	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	0	0	3	0	0	0	16	5	1	9	0
Future Volume (vph)	0	0	0	3	0	0	0	16	5	1	9	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	3	0	0	0	16	5	1	9	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	0	3	21	10								
Volume Left (vph)	0	3	0	1								
Volume Right (vph)	0	0	5	0								
Hadj (s)	0.00	0.23	0.37	0.05								
Departure Headway (s)	4.0	4.2	4.3	4.0								
Degree Utilization, x	0.00	0.00	0.02	0.01								
Capacity (veh/h)	900	845	827	897								
Control Delay (s)	7.0	7.2	7.4	7.0								
Approach Delay (s)	0.0	7.2	7.4	7.0								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.3									
Level of Service			Α									
Intersection Capacity Utilization	tion		15.8%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

	٠	•	•	<u>†</u>	 	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4	1>	
Traffic Volume (veh/h)	8	8	7	54	94	4
Future Volume (Veh/h)	8	8	7	54	94	4
Sign Control	Stop		•	Free	Free	•
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	8	8	7	54	94	4
Pedestrians			'	01	01	•
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				INOHE	INOLIG	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	164	96	98			
vC1, stage 1 conf vol	104	90	90			
vC2, stage 2 conf vol						
vCu, unblocked vol	164	96	98			
The second secon	6.5	6.3	4.1			
tC, single (s)	0.0	0.3	4.1			
tC, 2 stage (s)	2.0	2.4	2.2			
tF (s)	3.6	3.4	2.2			
p0 queue free %	99	99	100			
cM capacity (veh/h)	805	939	1483			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	16	61	98			
Volume Left	8	7	0			
Volume Right	8	0	4			
cSH	867	1483	1700			
Volume to Capacity	0.02	0.00	0.06			
Queue Length 95th (m)	0.4	0.1	0.0			
Control Delay (s)	9.2	0.9	0.0			
Lane LOS	Α	Α				
Approach Delay (s)	9.2	0.9	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			1.2			
Intersection Capacity Utiliz	zation		19.2%	IC	CU Level c	of Service
Analysis Period (min)			15	· ·	, = 3.070	
malysis Period (min)			15			

	•	→	*	•	←	•	4	†	/	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	5	4	4	10	0	7	3	1	0	4	0
Future Volume (vph)	0	5	4	4	10	0	7	3	1	0	4	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	5	4	4	10	0	7	3	1	0	4	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	9	14	11	4								
Volume Left (vph)	0	4	7	0								
Volume Right (vph)	4	0	1	0								
Hadj (s)	-0.23	0.09	0.28	0.03								
Departure Headway (s)	3.7	4.0	4.2	4.0								
Degree Utilization, x	0.01	0.02	0.01	0.00								
Capacity (veh/h)	957	884	833	891								
Control Delay (s)	6.7	7.1	7.3	7.0								
Approach Delay (s)	6.7	7.1	7.3	7.0								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.1									
Level of Service			Α									
Intersection Capacity Utilizat	ion		18.3%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

31_10t AW 2027	- Occitati	0 1									00/2	-0/2020
	۶	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	0	0	6	0	0	0	0	8	0	0	0
Future Volume (Veh/h)	0	0	0	6	0	0	0	0	8	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	6	0	0	0	0	8	0	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)		110110			110110							
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	0			0			12	12	0	20	12	0
vC1, stage 1 conf vol							1,5	1.5			1.5	
vC2, stage 2 conf vol												
vCu, unblocked vol	0			0			12	12	0	20	12	0
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)								0.0	0.2		0.0	0.2
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			100	100	99	100	100	100
cM capacity (veh/h)	1623			1623			1002	879	1085	983	879	1085
		WD4	ND 4				1002	0.0			0.0	1000
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	0	6	8	0								
Volume Left	0	6	0	0								
Volume Right	0	0	8	0								
cSH	1700	1623	1085	1700								
Volume to Capacity	0.00	0.00	0.01	0.04								
Queue Length 95th (m)	0.0	0.1	0.2	0.0								
Control Delay (s)	0.0	7.2	8.3	0.0								
Lane LOS	0.0	A	A	A								
Approach Delay (s)	0.0	7.2	8.3	0.0								
Approach LOS			Α	Α								
Intersection Summary												
Average Delay			7.9									
Intersection Capacity Utiliz	zation		13.3%	IC	CU Level o	f Service			Α			
Analysis Period (min)			15									

Movement EBL EBR NBL NBT SBR
Lane Configurations Y
Traffic Volume (veh/h) 9 8 12 122 89 7
Future Volume (Veh/h) 9 8 12 122 89 7
Sign Control Stop Free Free
Grade 0% 0% 0%
Peak Hour Factor 1.00 1.00 1.00 1.00 1.00
Hourly flow rate (vph) 9 8 12 122 89 7
Pedestrians
Lane Width (m)
Walking Speed (m/s)
Percent Blockage
Right turn flare (veh)
Median type None None
Median storage veh)
Upstream signal (m)
pX, platoon unblocked
vC, conflicting volume 238 92 96
vC1, stage 1 conf vol
vC2, stage 2 conf vol
vCu, unblocked vol 238 92 96
tC, single (s) 6.5 6.3 4.1
tC, 2 stage (s)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Direction, Lane # EB 1 NB 1 SB 1
Volume Total 17 134 96
Volume Left 9 12 0
Volume Right 8 0 7
cSH 815 1485 1700
Volume to Capacity 0.02 0.01 0.06
Queue Length 95th (m) 0.5 0.2 0.0
Control Delay (s) 9.5 0.7 0.0
Lane LOS A A
Approach Delay (s) 9.5 0.7 0.0
Approach LOS A
Intersection Summary
Average Delay 1.0
Intersection Capacity Utilization 24.1% ICU Level of Service
Analysis Period (min) 15

	•	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	13	9	3	17	0	12	2	5	1	4	0
Future Volume (vph)	0	13	9	3	17	0	12	2	5	1	4	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	13	9	3	17	0	12	2	5	1	4	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	22	20	19	5								
Volume Left (vph)	0	3	12	1								
Volume Right (vph)	9	0	5	0								
Hadj (s)	-0.21	0.06	0.18	0.07								
Departure Headway (s)	3.8	4.0	4.2	4.1								
Degree Utilization, x	0.02	0.02	0.02	0.01								
Capacity (veh/h)	943	881	843	868								
Control Delay (s)	6.8	7.1	7.3	7.1								
Approach Delay (s)	6.8	7.1	7.3	7.1								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.1									
Level of Service			Α									
Intersection Capacity Utiliza	tion		14.9%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

<u></u>												
	۶	→	•	•	•	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	0	0	11	0	0	0	0	9	0	0	0
Future Volume (Veh/h)	0	0	0	11	0	0	0	0	9	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	11	0	0	0	0	9	0	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	0			0			22	22	0	31	22	0
vC1, stage 1 conf vol										01		
vC2, stage 2 conf vol												
vCu, unblocked vol	0			0			22	22	0	31	22	0
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							,.,	0.0	0.2	,.,	0.0	0.2
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			100	100	99	100	100	100
cM capacity (veh/h)	1623			1623			985	866	1085	964	866	1085
		14/D 4	ND 4				300	000	1005	304	000	1000
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	0	11	9	0								
Volume Left	0	11	0	0								
Volume Right	0	0	9	0								
cSH	1700	1623	1085	1700								
Volume to Capacity	0.00	0.01	0.01	0.04								
Queue Length 95th (m)	0.0	0.2	0.2	0.0								
Control Delay (s)	0.0	7.2	8.3	0.0								
Lane LOS		Α	Α	Α								
Approach Delay (s)	0.0	7.2	8.3	0.0								
Approach LOS			Α	Α								
Intersection Summary												
Average Delay			7.7									
Intersection Capacity Utiliz	zation		13.3%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									
. ,												

	۶	•	•	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			ર્ન	ĵ»	
Traffic Volume (veh/h)	6	8	7	54	94	1
Future Volume (Veh/h)	6	8	7	54	94	1
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	6	8	7	54	94	1
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	162	94	95			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	162	94	95			
tC, single (s)	6.5	6.3	4.1			
tC, 2 stage (s)						
tF (s)	3.6	3.4	2.2			
p0 queue free %	99	99	100			
cM capacity (veh/h)	806	941	1486			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	14	61	95			
Volume Left	6	7	0			
Volume Right	8	0	1			
cSH	878	1486	1700			
Volume to Capacity	0.02	0.00	0.06			
Queue Length 95th (m)	0.02	0.00	0.00			
	9.2	0.1	0.0			
Control Delay (s) Lane LOS	9.2 A	0.9 A	0.0			
Approach Delay (s)	9.2	0.9	0.0			
Approach LOS	9.2 A	0.9	0.0			
Approach LOS	A					
Intersection Summary						
Average Delay			1.1			
Intersection Capacity Utilization	on		19.2%	IC	CU Level c	f Service
Analysis Period (min)			15			

	•	→	*	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	0	0	4	0	0	0	3	1	0	4	0
Future Volume (vph)	0	0	0	4	0	0	0	3	1	0	4	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	4	0	0	0	3	1	0	4	0
Direction, Lane#	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	0	4	4	4								
Volume Left (vph)	0	4	0	0								
Volume Right (vph)	0	0	1	0								
Hadj (s)	0.00	0.23	0.36	0.03								
Departure Headway (s)	3.9	4.2	4.3	3.9								
Degree Utilization, x	0.00	0.00	0.00	0.00								
Capacity (veh/h)	912	860	829	906								
Control Delay (s)	6.9	7.2	7.3	7.0								
Approach Delay (s)	0.0	7.2	7.3	7.0								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.1									
Level of Service			Α									
Intersection Capacity Utiliza	tion		14.9%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

22	Tot ANA	2027	Cooperie	•
SS	I OL AIVI	2 02 <i>1</i>	- Scenario	4

	۶	→	•	•	—	•	•	†	<i>></i>	\	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	0	0	3	0	0	0	0	6	0	0	0
Future Volume (Veh/h)	0	0	0	3	0	0	0	0	6	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	3	0	0	0	0	6	0	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	0			0			6	6	0	12	6	0
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	0			0			6	6	0	12	6	0
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			100	100	99	100	100	100
cM capacity (veh/h)	1623			1623			1013	888	1085	998	888	1085
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	0	3	6	0								
Volume Left	0	3	0	0								
Volume Right	0	0	6	0								
cSH	1700	1623	1085	1700								
Volume to Capacity	0.00	0.00	0.01	0.00								
Queue Length 95th (m)	0.0	0.0	0.1	0.0								
Control Delay (s)	0.0	7.2	8.3	0.0								
Lane LOS		Α	Α	Α								
Approach Delay (s)	0.0	7.2	8.3	0.0								
Approach LOS			А	Α								
Intersection Summary												
Average Delay			8.0									
Intersection Capacity Utiliza	tion		13.3%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

	٠	*	1	†	+	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4	1 >	
Traffic Volume (veh/h)	5	8	12	122	89	10
Future Volume (Veh/h)	5	8	12	122	89	10
Sign Control	Stop		·-	Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	5	8	12	122	89	10
Pedestrians				,		
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				140110	140110	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	240	94	99			
vC1, stage 1 conf vol	240	J-T	33			
vC2, stage 2 conf vol						
vCu, unblocked vol	240	94	99			
tC, single (s)	6.5	6.3	4.1			
tC, 2 stage (s)	0.5	0.0	7.1			
tF (s)	3.6	3.4	2.2			
p0 queue free %	99	99	99			
cM capacity (veh/h)	725	941	1481			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	13	134	99			
Volume Left	5	12	0			
Volume Right	8	0	10			
cSH	844	1481	1700			
Volume to Capacity	0.02	0.01	0.06			
Queue Length 95th (m)	0.4	0.2	0.0			
Control Delay (s)	9.3	0.7	0.0			
Lane LOS	Α	Α				
Approach Delay (s)	9.3	0.7	0.0			
Approach LOS	Α					
Intersection Summary						
Average Delay			0.9			
Intersection Capacity Utiliza	tion		24.1%	IC	CU Level o	of Service
Analysis Period (min)			15			

	۶	→	*	•	←	•	4	†	/	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	0	0	3	25	0	18	2	5	1	4	0
Future Volume (vph)	0	0	0	3	25	0	18	2	5	1	4	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	3	25	0	18	2	5	1	4	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	0	28	25	5								
Volume Left (vph)	0	3	18	1								
Volume Right (vph)	0	0	5	0								
Hadj (s)	0.00	0.06	0.19	0.07								
Departure Headway (s)	4.0	4.0	4.2	4.1								
Degree Utilization, x	0.00	0.03	0.03	0.01								
Capacity (veh/h)	900	884	848	875								
Control Delay (s)	7.0	7.2	7.3	7.1								
Approach Delay (s)	0.0	7.2	7.3	7.1								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.2									
Level of Service			Α									
Intersection Capacity Utilizati	on		15.8%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

<u>5+_10(1 W 2027 - </u>	- Occitati	Journal of Z					00/10/2020						
	۶	→	•	•	←	•	4	†	/	/	ļ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Volume (veh/h)	0	0	0	14	0	0	0	0	5	0	0	0	
Future Volume (Veh/h)	0	0	0	14	0	0	0	0	5	0	0	0	
Sign Control		Free			Free			Stop			Stop		
Grade		0%			0%			0%			0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	0	0	0	14	0	0	0	0	5	0	0	0	
Pedestrians													
Lane Width (m)													
Walking Speed (m/s)													
Percent Blockage													
Right turn flare (veh)													
Median type		None			None								
Median storage veh)													
Upstream signal (m)													
pX, platoon unblocked													
vC, conflicting volume	0			0			28	28	0	33	28	0	
vC1, stage 1 conf vol													
vC2, stage 2 conf vol													
vCu, unblocked vol	0			0			28	28	0	33	28	0	
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2	
tC, 2 stage (s)													
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3	
p0 queue free %	100			99			100	100	100	100	100	100	
cM capacity (veh/h)	1623			1623			975	858	1085	963	858	1085	
Direction, Lane #	EB 1	WB 1	NB 1	SB 1									
Volume Total	0	14	5	0									
Volume Left	0	14	0	0									
	0	0	5	0									
Volume Right cSH	1700	1623	1085	1700									
Volume to Capacity	0.00	0.01	0.00	0.00									
Queue Length 95th (m)	0.0	0.2		0.0									
Control Delay (s)	0.0	7.2	8.3	0.0									
Lane LOS	0.0	A	A	A									
Approach Delay (s)	0.0	7.2	8.3	0.0									
Approach LOS			Α	Α									
Intersection Summary													
Average Delay			7.5										
Intersection Capacity Utiliz	zation		13.3%	IC	CU Level o	of Service			Α				
Analysis Period (min)			15										

	٠	•	•	†		✓
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4	f _a	
Traffic Volume (veh/h)	6	8	7	54	94	9
Future Volume (Veh/h)	6	8	7	54	94	9
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	6	8	7	54	94	9
Pedestrians			•	0.	<u> </u>	
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				INOHE	INUITE	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	166	98	103			
vC1, stage 1 conf vol	100	90	103			
vC2, stage 2 conf vol						
vCu, unblocked vol	166	98	103			
	6.5	6.3	4.1			
tC, single (s)	0.0	0.3	4.1			
tC, 2 stage (s)	2.0	2.4	0.0			
tF (s)	3.6	3.4	2.2			
p0 queue free %	99	99	100			
cM capacity (veh/h)	802	936	1476			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	14	61	103			
Volume Left	6	7	0			
Volume Right	8	0	9			
cSH	873	1476	1700			
Volume to Capacity	0.02	0.00	0.06			
Queue Length 95th (m)	0.4	0.1	0.0			
Control Delay (s)	9.2	0.9	0.0			
Lane LOS	А	Α				
Approach Delay (s)	9.2	0.9	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			1.0			
Intersection Capacity Utiliz	zation		19.2%	IC	CU Level o	of Service
Analysis Period (min)			15.270	IC.	JO LOVOI (J. COI VIOG
Alialysis Feliou (IIIIII)			10			

	•	→	•	•	←	•	4	†	/	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	0	0	4	25	0	18	3	1	0	4	0
Future Volume (vph)	0	0	0	4	25	0	18	3	1	0	4	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	4	25	0	18	3	1	0	4	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	0	29	22	4								
Volume Left (vph)	0	4	18	0								
Volume Right (vph)	0	0	1	0								
Hadj (s)	0.00	0.06	0.26	0.03								
Departure Headway (s)	4.0	4.0	4.2	4.0								
Degree Utilization, x	0.00	0.03	0.03	0.00								
Capacity (veh/h)	900	885	834	883								
Control Delay (s)	7.0	7.2	7.3	7.0								
Approach Delay (s)	0.0	7.2	7.3	7.0								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.2									
Level of Service			Α									
Intersection Capacity Utilizat	tion		19.4%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	→	•	•	—	•	•	†	<i>></i>	/	†	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	0	0	11	0	0	0	0	6	0	0	0
Future Volume (Veh/h)	0	0	0	11	0	0	0	0	6	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	11	0	0	0	0	6	0	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	0			0			22	22	0	28	22	0
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	0			0			22	22	0	28	22	0
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)									<u> </u>			,
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			100	100	99	100	100	100
cM capacity (veh/h)	1623			1623			985	866	1085	971	866	1085
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	0	11	6	0								
Volume Left	0	11	0	0								
Volume Right	0	0	6	0								
cSH	1700	1623	1085	1700								
Volume to Capacity	0.00	0.01	0.01	0.00								
Queue Length 95th (m)	0.0	0.2	0.1	0.0								
Control Delay (s)	0.0	7.2	8.3	0.0								
Lane LOS		Α	A	A								
Approach Delay (s)	0.0	7.2	8.3	0.0								
Approach LOS	0.0	,	A	A								
Intersection Summary												
Average Delay			7.6									
Intersection Capacity Utiliza	ation		13.3%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									
,												

	•	•	•	†		✓
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4	1 >	
Traffic Volume (veh/h)	13	8	12	122	89	2
Future Volume (Veh/h)	13	8	12	122	89	2
Sign Control	Stop		·-	Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	13	8	12	122	89	2
Pedestrians			·-			
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	236	90	91			
vC1, stage 1 conf vol	200		<u> </u>			
vC2, stage 2 conf vol						
vCu, unblocked vol	236	90	91			
tC, single (s)	6.5	6.3	4.1			
tC, 2 stage (s)		0.0				
tF (s)	3.6	3.4	2.2			
p0 queue free %	98	99	99			
cM capacity (veh/h)	729	946	1491			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	21	134	91			
Volume Left	13	12	0			
Volume Right	8	0	2			
cSH	799	1491	1700			
Volume to Capacity	0.03	0.01	0.05			
Queue Length 95th (m)	0.6	0.2	0.0			
Control Delay (s)	9.6	0.7	0.0			
Lane LOS	Α	Α				
Approach Delay (s)	9.6	0.7	0.0			
Approach LOS	Α					
Intersection Summary						
Average Delay			1.2			
Intersection Capacity Utiliza	tion		24.1%	IC	CU Level o	of Service
Analysis Period (min)			15			

	•	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	25	18	3	0	0	0	2	5	1	4	0
Future Volume (vph)	0	25	18	3	0	0	0	2	5	1	4	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	25	18	3	0	0	0	2	5	1	4	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	43	3	7	5								
Volume Left (vph)	0	3	0	1								
Volume Right (vph)	18	0	5	0								
Hadj (s)	-0.22	0.23	0.08	0.07								
Departure Headway (s)	3.7	4.2	4.1	4.1								
Degree Utilization, x	0.04	0.00	0.01	0.01								
Capacity (veh/h)	959	849	860	869								
Control Delay (s)	6.9	7.2	7.1	7.1								
Approach Delay (s)	6.9	7.2	7.1	7.1								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			6.9									
Level of Service			Α									
Intersection Capacity Utiliza	ation		14.9%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	→	•	•	←	4	1	†	<i>></i>	/	†	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	0	0	6	0	0	0	0	13	0	0	0
Future Volume (Veh/h)	0	0	0	6	0	0	0	0	13	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	6	0	0	0	0	13	0	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	0			0			12	12	0	25	12	0
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	0			0			12	12	0	25	12	0
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			100	100	99	100	100	100
cM capacity (veh/h)	1623			1623			1002	879	1085	971	879	1085
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	0	6	13	0								
Volume Left	0	6	0	0								
Volume Right	0	0	13	0								
cSH	1700	1623	1085	1700								
Volume to Capacity	0.00	0.00	0.01	0.00								
Queue Length 95th (m)	0.0	0.1	0.3	0.0								
Control Delay (s)	0.0	7.2	8.4	0.0								
Lane LOS		Α	Α	Α								
Approach Delay (s)	0.0	7.2	8.4	0.0								
Approach LOS			Α	Α								
Intersection Summary												
Average Delay			8.0									
Intersection Capacity Utiliz	ation		13.3%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	•	*	4	†	+	4	•
Movement	EBL	EBR	NBL	NBT	SBT	SBR	I
Lane Configurations	W			4	1>		Ī
Traffic Volume (veh/h)	15	38	21	59	103	7	
Future Volume (Veh/h)	15	38	21	59	103	7	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	15	38	21	59	103	7	
Pedestrians	_						
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	208	106	110				
vC1, stage 1 conf vol	200		1.0				
vC2, stage 2 conf vol							
vCu, unblocked vol	208	106	110				
tC, single (s)	6.5	6.3	4.1				
tC, 2 stage (s)	0.0	0.0					
tF (s)	3.6	3.4	2.2				
p0 queue free %	98	96	99				
cM capacity (veh/h)	752	926	1468				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	53	80	110				
Volume Left	15	21	0				
Volume Right	38	0	7				
cSH	869	1468	1700				
Volume to Capacity	0.06	0.01	0.06				
Queue Length 95th (m)	1.5	0.3	0.0				
Control Delay (s)	9.4	2.0	0.0				
Lane LOS	А	Α					
Approach Delay (s)	9.4	2.0	0.0				
Approach LOS	Α						
Intersection Summary							
Average Delay			2.7				Ī
Intersection Capacity Utilizati	ion		21.2%	IC	CU Level o	f Service	
Analysis Period (min)			15			2200	

	•	→	*	•	←	•	4	†	/	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	5	4	4	10	0	7	3	1	0	11	0
Future Volume (vph)	0	5	4	4	10	0	7	3	1	0	11	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	5	4	4	10	0	7	3	1	0	11	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	9	14	11	11								
Volume Left (vph)	0	4	7	0								
Volume Right (vph)	4	0	1	0								
Hadj (s)	-0.23	0.09	0.28	0.03								
Departure Headway (s)	3.7	4.0	4.2	4.0								
Degree Utilization, x	0.01	0.02	0.01	0.01								
Capacity (veh/h)	952	879	832	891								
Control Delay (s)	6.8	7.1	7.3	7.0								
Approach Delay (s)	6.8	7.1	7.3	7.0								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.1									
Level of Service			Α									
Intersection Capacity Utilizat	tion		18.3%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

41_10t Alvi 2032 -	032 - 30enano 1										00/2	.0/2023
	٠	→	•	•	←	•	•	†	/	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	0	0	6	0	17	0	0	8	44	0	0
Future Volume (Veh/h)	0	0	0	6	0	17	0	0	8	44	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	6	0	17	0	0	8	44	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	17			0			20	29	0	28	20	8
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	17			0			20	29	0	28	20	8
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)								0.0	V. <u> </u>		0.0	V
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			100	100	99	95	100	100
cM capacity (veh/h)	1600			1623			990	861	1085	971	870	1073
	EB 1	WB 1	ND 4						1000	0	0.0	
Direction, Lane #			NB 1	SB 1								
Volume Total	0	23	8	44								
Volume Left	0	6	0	44								
Volume Right	0	17	8	0								
cSH	1700	1623	1085	971								
Volume to Capacity	0.00	0.00	0.01	0.05								
Queue Length 95th (m)	0.0	0.1	0.2	1.1								
Control Delay (s)	0.0	1.9	8.3	8.9								
Lane LOS		A	Α	Α								
Approach Delay (s)	0.0	1.9	8.3	8.9								
Approach LOS			Α	Α								
Intersection Summary												
Average Delay			6.7									
Intersection Capacity Utiliza	ation		19.2%	IC	CU Level o	f Service			Α			
Analysis Period (min)			15									
,												

•	1	†	+	4
EBR	NBL	NBT	SBT	SBR
23	45			11
	45			11
1.00	1.00			1.00
				11
		None	None	
		140116	INOIIG	
104	100			
104	103			
104	100			
0.3	4.1			
2 /	2.2			
NB 1				
1469				
0.03	0.06			
0.7	0.0			
2.1	0.0			
Α				
2.1	0.0			
	24			
		IC	CU Level o	of Service
		10	201010	501 1100
	23 23 1.00 23 1.00 23 1.04 6.3 3.4 98 930 NB 1 178 45 0 1469 0.03 0.7 2.1 A	23 45 23 45 1.00 1.00 23 45 104 109 104 109 6.3 4.1 3.4 2.2 98 97 930 1469 NB 1 SB 1 178 109 45 0 0 11 1469 1700 0.03 0.06 0.7 0.0 2.1 0.0 A	23 45 133 23 45 133 Free 0% 1.00 1.00 1.00 23 45 133 None 104 109 6.3 4.1 3.4 2.2 98 97 930 1469 NB 1 SB 1 178 109 45 0 0 11 1469 1700 0.03 0.06 0.7 0.0 2.1 0.0 A 2.1 0.0 2.4 26.7% IC	23 45 133 98 23 45 133 98 Free Free 0% 0% 1.00 1.00 1.00 1.00 23 45 133 98 None None Non

	•	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	13	9	3	17	0	12	18	5	1	11	0
Future Volume (vph)	0	13	9	3	17	0	12	18	5	1	11	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	13	9	3	17	0	12	18	5	1	11	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	22	20	35	12								
Volume Left (vph)	0	3	12	1								
Volume Right (vph)	9	0	5	0								
Hadj (s)	-0.21	0.06	0.33	0.05								
Departure Headway (s)	3.8	4.1	4.3	4.1								
Degree Utilization, x	0.02	0.02	0.04	0.01								
Capacity (veh/h)	925	865	812	868								
Control Delay (s)	6.9	7.2	7.5	7.1								
Approach Delay (s)	6.9	7.2	7.5	7.1								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.2									
Level of Service			Α									
Intersection Capacity Utiliza	tion		16.9%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

<u> </u>	Occitan	0 1									00/2	-0/2020
	•	→	\rightarrow	•	←	•	•	†	/	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	0	0	11	0	52	0	0	9	33	0	0
Future Volume (Veh/h)	0	0	0	11	0	52	0	0	9	33	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	11	0	52	0	0	9	33	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	52			0			48	74	0	57	48	26
vC1, stage 1 conf vol	02						10	, ,		O1	10	
vC2, stage 2 conf vol												
vCu, unblocked vol	52			0			48	74	0	57	48	26
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							,.,	0.0	0.2	,.,	0.0	0.2
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			100	100	99	96	100	100
cM capacity (veh/h)	1554			1623			948	811	1085	927	838	1050
		14/5 4	ND 4				340	011	1000	321	000	1000
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	0	63	9	33								
Volume Left	0	11	0	33								
Volume Right	0	52	9	0								
cSH	1700	1623	1085	927								
Volume to Capacity	0.00	0.01	0.01	0.04								
Queue Length 95th (m)	0.0	0.2	0.2	8.0								
Control Delay (s)	0.0	1.3	8.3	9.0								
Lane LOS		Α	Α	Α								
Approach Delay (s)	0.0	1.3	8.3	9.0								
Approach LOS			Α	Α								
Intersection Summary												
Average Delay			4.3									
Intersection Capacity Utiliza	ation		19.3%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									
J = 2 2 ()												

	•	•	•	†	+	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4	1>	
Traffic Volume (veh/h)	13	38	21	59	103	4
Future Volume (Veh/h)	13	38	21	59	103	4
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	13	38	21	59	103	4
Pedestrians						•
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				140110	140110	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	206	105	107			
vC1, stage 1 conf vol	200	100	107			
vC2, stage 2 conf vol						
vCu, unblocked vol	206	105	107			
tC, single (s)	6.5	6.3	4.1			
tC, 2 stage (s)	0.5	0.5	4.1			
tF (s)	3.6	3.4	2.2			
p0 queue free %	98	96	99			
cM capacity (veh/h)	754	928	1471			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	51	80	107			
Volume Left	13	21	0			
Volume Right	38	0	4			
cSH	876	1471	1700			
Volume to Capacity	0.06	0.01	0.06			
Queue Length 95th (m)	1.4	0.3	0.0			
Control Delay (s)	9.4	2.0	0.0			
Lane LOS	Α	Α				
Approach Delay (s)	9.4	2.0	0.0			
Approach LOS	Α					
Intersection Summary						
Average Delay			2.7			
Intersection Capacity Utilizat	tion		21.2%	IC	CU Level o	of Service
Analysis Period (min)			15			

	۶	→	•	•	•	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	0	0	4	0	0	0	3	1	0	11	0
Future Volume (vph)	0	0	0	4	0	0	0	3	1	0	11	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	4	0	0	0	3	1	0	11	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	0	4	4	11								
Volume Left (vph)	0	4	0	0								
Volume Right (vph)	0	0	1	0								
Hadj (s)	0.00	0.23	0.36	0.03								
Departure Headway (s)	3.9	4.2	4.3	3.9								
Degree Utilization, x	0.00	0.00	0.00	0.01								
Capacity (veh/h)	900	856	827	906								
Control Delay (s)	6.9	7.2	7.3	7.0								
Approach Delay (s)	0.0	7.2	7.3	7.0								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.1									
Level of Service			Α									
Intersection Capacity Utiliza	tion		14.9%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									

43 To	ot AM	2032 -	Scenario	2
-------	-------	--------	----------	---

	•	→	*	•	+	•	1	†	<i>></i>	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	0	0	3	0	17	0	0	6	44	0	0
Future Volume (Veh/h)	0	0	0	3	0	17	0	0	6	44	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	3	0	17	0	0	6	44	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	17			0			14	23	0	20	14	8
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	17			0			14	23	0	20	14	8
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			100	100	99	96	100	100
cM capacity (veh/h)	1600			1623			1000	869	1085	986	878	1073
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	0	20	6	44								
Volume Left	0	3	0	44								
Volume Right	0	17	6	0								
cSH	1700	1623	1085	986								
Volume to Capacity	0.00	0.00	0.01	0.04								
Queue Length 95th (m)	0.0	0.0	0.1	1.1								
Control Delay (s)	0.0	1.1	8.3	8.8								
Lane LOS		Α	Α	Α								
Approach Delay (s)	0.0	1.1	8.3	8.8								
Approach LOS			Α	Α								
Intersection Summary												
Average Delay			6.6									
Intersection Capacity Utiliza	tion		19.2%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

	•	*	4	†		4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4	1 >	
Traffic Volume (veh/h)	16	23	45	133	98	14
Future Volume (Veh/h)	16	23	45	133	98	14
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	16	23	45	133	98	14
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	328	105	112			
vC1, stage 1 conf vol	020	.00				
vC2, stage 2 conf vol						
vCu, unblocked vol	328	105	112			
tC, single (s)	6.5	6.3	4.1			
tC, 2 stage (s)		0.0				
tF (s)	3.6	3.4	2.2			
p0 queue free %	97	98	97			
cM capacity (veh/h)	630	928	1465			
		NB 1	SB 1			
Direction, Lane #	EB 1					
Volume Total	39	178	112			
Volume Left	16	45	0			
Volume Right	23	0	14			
cSH	777	1465	1700			
Volume to Capacity	0.05	0.03	0.07			
Queue Length 95th (m)	1.2	0.7	0.0			
Control Delay (s)	9.9	2.1	0.0			
Lane LOS	Α	Α				
Approach Delay (s)	9.9	2.1	0.0			
Approach LOS	Α					
Intersection Summary						
Average Delay			2.3			
Intersection Capacity Utilizat	tion		26.7%	IC	CU Level o	of Service
Analysis Period (min)			15			

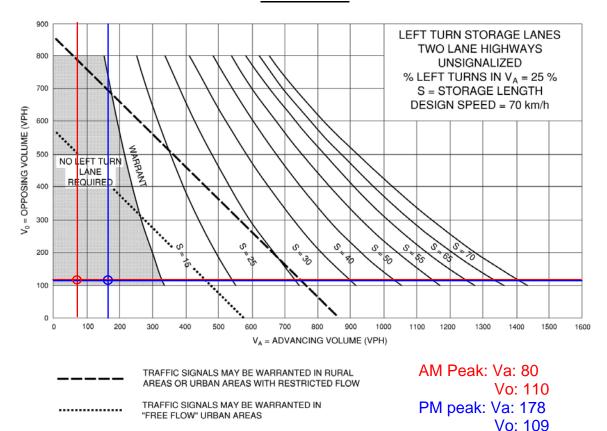
	•	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	0	0	3	25	0	18	18	5	1	11	0
Future Volume (vph)	0	0	0	3	25	0	18	18	5	1	11	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	3	25	0	18	18	5	1	11	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	0	28	41	12								
Volume Left (vph)	0	3	18	1								
Volume Right (vph)	0	0	5	0								
Hadj (s)	0.00	0.06	0.32	0.05								
Departure Headway (s)	4.0	4.1	4.3	4.1								
Degree Utilization, x	0.00	0.03	0.05	0.01								
Capacity (veh/h)	883	868	822	875								
Control Delay (s)	7.0	7.2	7.5	7.1								
Approach Delay (s)	0.0	7.2	7.5	7.1								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.3									
Level of Service			Α									
Intersection Capacity Utiliza	tion		19.1%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

<u> </u>		<u> </u>										
	٠	→	•	•	←	•	1	†	~	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			44	
Traffic Volume (veh/h)	0	0	0	14	0	52	0	0	5	33	0	0
Future Volume (Veh/h)	0	0	0	14	0	52	0	0	5	33	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	14	0	52	0	0	5	33	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	52			0			54	80	0	59	54	26
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	52			0			54	80	0	59	54	26
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			100	100	100	96	100	100
cM capacity (veh/h)	1554			1623			938	803	1085	927	830	1050
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	0	66	5	33								
Volume Left	0	14	0	33								
Volume Right	0	52	5	0								
cSH	1700	1623	1085	927								
Volume to Capacity	0.00	0.01	0.00	0.04								
Queue Length 95th (m)	0.0	0.2	0.1	0.8								
Control Delay (s)	0.0	1.6	8.3	9.0								
Lane LOS		Α	Α	Α								
Approach Delay (s)	0.0	1.6	8.3	9.0								
Approach LOS			Α	Α								
Intersection Summary												
Average Delay			4.3									
Intersection Capacity Utiliz	zation		19.5%	IC	CU Level of	of Service			Α			
Analysis Period (min)			15									

	•	•	4	†		1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	f)	
Traffic Volume (veh/h)	13	38	21	59	103	12
Future Volume (Veh/h)	13	38	21	59	103	12
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	13	38	21	59	103	12
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	210	109	115			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	210	109	115			
tC, single (s)	6.5	6.3	4.1			
tC, 2 stage (s)						
tF (s)	3.6	3.4	2.2			
p0 queue free %	98	96	99			
cM capacity (veh/h)	750	923	1462			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	51	80	115			
Volume Left	13	21	0			
Volume Right	38	0	12			
cSH	872	1462	1700			
Volume to Capacity	0.06	0.01	0.07			
Queue Length 95th (m)	1.4	0.3	0.0			
Control Delay (s)	9.4	2.1	0.0			
Lane LOS	А	Α				
Approach Delay (s)	9.4	2.1	0.0			
Approach LOS	Α					
Intersection Summary						
Average Delay			2.6			
Intersection Capacity Utilizat	tion		21.2%	IC	CU Level o	f Service
Analysis Period (min)			15			
.,						

	•	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	0	0	4	25	0	18	3	1	0	11	0
Future Volume (vph)	0	0	0	4	25	0	18	3	1	0	11	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	4	25	0	18	3	1	0	11	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	0	29	22	11								
Volume Left (vph)	0	4	18	0								
Volume Right (vph)	0	0	1	0								
Hadj (s)	0.00	0.06	0.26	0.03								
Departure Headway (s)	4.0	4.0	4.2	4.0								
Degree Utilization, x	0.00	0.03	0.03	0.01								
Capacity (veh/h)	900	880	833	883								
Control Delay (s)	7.0	7.2	7.3	7.1								
Approach Delay (s)	0.0	7.2	7.3	7.1								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.2									
Level of Service			Α									
Intersection Capacity Utiliza	tion		19.4%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	→	•	•	←	4	1	†	<i>></i>	/	ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	0	0	11	0	17	0	0	6	44	0	0
Future Volume (Veh/h)	0	0	0	11	0	17	0	0	6	44	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	11	0	17	0	0	6	44	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	17			0			30	39	0	36	30	8
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	17			0			30	39	0	36	30	8
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			100	100	99	95	100	100
cM capacity (veh/h)	1600			1623			973	847	1085	959	856	1073
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	0	28	6	44								
Volume Left	0	11	0	44								
Volume Right	0	17	6	0								
cSH	1700	1623	1085	959								
Volume to Capacity	0.00	0.01	0.01	0.05								
Queue Length 95th (m)	0.0	0.2	0.1	1.1								
Control Delay (s)	0.0	2.9	8.3	8.9								
Lane LOS		Α	Α	Α								
Approach Delay (s)	0.0	2.9	8.3	8.9								
Approach LOS			Α	Α								
Intersection Summary												
Average Delay			6.7									
Intersection Capacity Utiliza	ation		19.2%	IC	CU Level c	of Service			Α			
Analysis Period (min)			15									


	۶	•	4	†		1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			ર્ન	f)	
Traffic Volume (veh/h)	24	23	45	133	98	6
Future Volume (Veh/h)	24	23	45	133	98	6
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	24	23	45	133	98	6
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	324	101	104			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	324	101	104			
tC, single (s)	6.5	6.3	4.1			
tC, 2 stage (s)						
tF (s)	3.6	3.4	2.2			
p0 queue free %	96	98	97			
cM capacity (veh/h)	634	933	1475			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	47	178	104			
Volume Left	24	45	0			
Volume Right	23	45	6			
cSH	752	1475	1700			
Volume to Capacity	0.06	0.03	0.06			
	1.5	0.03	0.00			
Queue Length 95th (m)		2.1				
Control Delay (s)	10.1		0.0			
Lane LOS	В	A	0.0			
Approach Delay (s)	10.1	2.1	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			2.6			
Intersection Capacity Utilizat	tion		26.7%	IC	CU Level o	of Service
Analysis Period (min)			15			

	•	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	25	18	3	0	0	0	18	5	1	11	0
Future Volume (vph)	0	25	18	3	0	0	0	18	5	1	11	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	25	18	3	0	0	0	18	5	1	11	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	43	3	23	12								
Volume Left (vph)	0	3	0	1								
Volume Right (vph)	18	0	5	0								
Hadj (s)	-0.22	0.23	0.38	0.05								
Departure Headway (s)	3.8	4.3	4.4	4.1								
Degree Utilization, x	0.04	0.00	0.03	0.01								
Capacity (veh/h)	941	833	801	869								
Control Delay (s)	6.9	7.3	7.5	7.1								
Approach Delay (s)	6.9	7.3	7.5	7.1								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.1									
Level of Service			Α									
Intersection Capacity Utiliza	ition		14.9%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	→	•	•	←	4	1	†	<i>></i>	/	†	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	0	0	6	0	52	0	0	13	33	0	0
Future Volume (Veh/h)	0	0	0	6	0	52	0	0	13	33	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	0	6	0	52	0	0	13	33	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	52			0			38	64	0	51	38	26
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	52			0			38	64	0	51	38	26
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			100	100	99	96	100	100
cM capacity (veh/h)	1554			1623			964	824	1085	934	851	1050
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	0	58	13	33								
Volume Left	0	6	0	33								
Volume Right	0	52	13	0								
cSH	1700	1623	1085	934								
Volume to Capacity	0.00	0.00	0.01	0.04								
Queue Length 95th (m)	0.0	0.1	0.3	0.8								
Control Delay (s)	0.0	0.8	8.4	9.0								
Lane LOS		Α	Α	Α								
Approach Delay (s)	0.0	0.8	8.4	9.0								
Approach LOS			Α	Α								
Intersection Summary												
Average Delay			4.3									
Intersection Capacity Utilization	ation		19.0%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

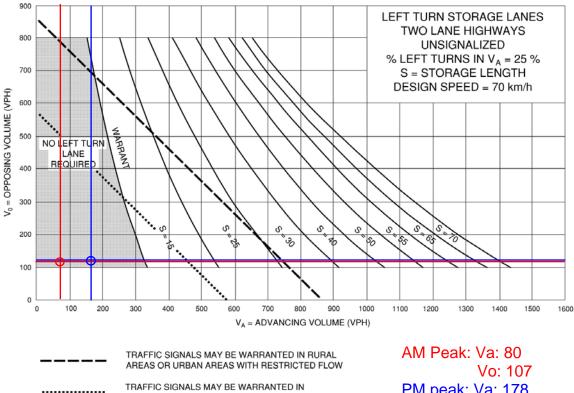
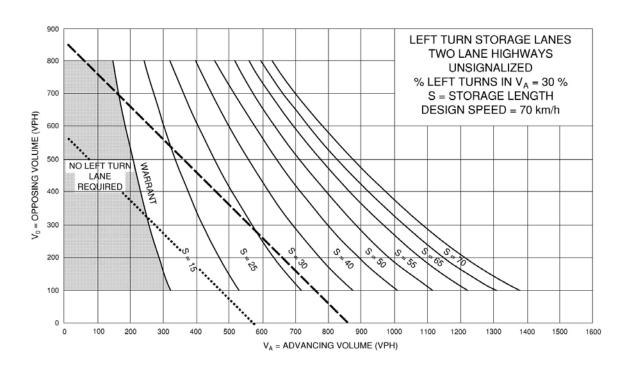
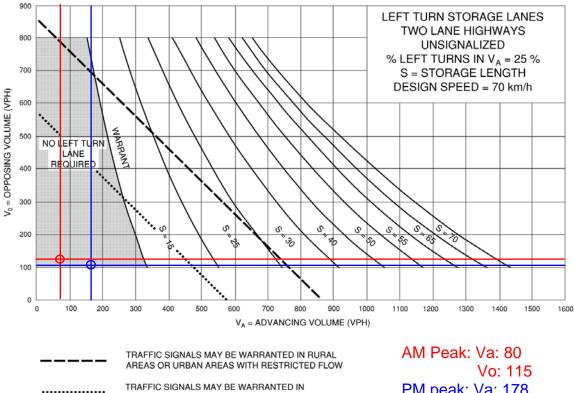

APPENDIX D Left Turn Lane Graphs

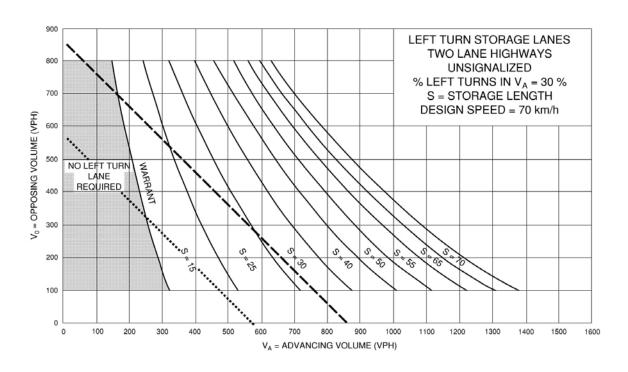
Exhibit 9A-13



LEFT TURN STORAGE LANES TWO LANE HIGHWAYS UNSIGNALIZED % LEFT TURNS IN V_A = 30 % 700 S = STORAGE LENGTH DESIGN SPEED = 70 km/h V₀ = OPPOSING VOLUME (VPH) 600 NO LEFT TURN LANE REQUIRED 300 S 200 100 0 100 500 900 1300 V_A = ADVANCING VOLUME (VPH)


Exhibit 9A-13

-----"FREE FLOW" URBAN AREAS PM peak: Va: 178 Vo: 112


Exhibit 9A-13

-----"FREE FLOW" URBAN AREAS

PM peak: Va: 178

Vo: 104

